adc.c 12 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359
  1. /* USER CODE BEGIN Header */
  2. /**
  3. ******************************************************************************
  4. * @file adc.c
  5. * @brief This file provides code for the configuration
  6. * of the ADC instances.
  7. ******************************************************************************
  8. * @attention
  9. *
  10. * Copyright (c) 2023 STMicroelectronics.
  11. * All rights reserved.
  12. *
  13. * This software is licensed under terms that can be found in the LICENSE file
  14. * in the root directory of this software component.
  15. * If no LICENSE file comes with this software, it is provided AS-IS.
  16. *
  17. ******************************************************************************
  18. */
  19. /* USER CODE END Header */
  20. /* Includes ------------------------------------------------------------------*/
  21. #include "adc.h"
  22. /* USER CODE BEGIN 0 */
  23. float CalculateTemperature(uint16_t adc_value, float vref);
  24. /* USER CODE END 0 */
  25. ADC_HandleTypeDef hadc1;
  26. /* ADC1 init function */
  27. void MX_ADC1_Init(void)
  28. {
  29. /* USER CODE BEGIN ADC1_Init 0 */
  30. /* USER CODE END ADC1_Init 0 */
  31. ADC_ChannelConfTypeDef sConfig = {0};
  32. /* USER CODE BEGIN ADC1_Init 1 */
  33. /* USER CODE END ADC1_Init 1 */
  34. /** Common config
  35. */
  36. hadc1.Instance = ADC1;
  37. hadc1.Init.ScanConvMode = ADC_SCAN_ENABLE;
  38. hadc1.Init.ContinuousConvMode = DISABLE;
  39. hadc1.Init.DiscontinuousConvMode = ENABLE;
  40. hadc1.Init.NbrOfDiscConversion = 1;
  41. hadc1.Init.ExternalTrigConv = ADC_SOFTWARE_START;
  42. hadc1.Init.DataAlign = ADC_DATAALIGN_RIGHT;
  43. hadc1.Init.NbrOfConversion = 3;
  44. if (HAL_ADC_Init(&hadc1) != HAL_OK)
  45. {
  46. Error_Handler();
  47. }
  48. /** Configure Regular Channel
  49. */
  50. sConfig.Channel = ADC_CHANNEL_10;
  51. sConfig.Rank = ADC_REGULAR_RANK_1;
  52. sConfig.SamplingTime = ADC_SAMPLETIME_239CYCLES_5;
  53. if (HAL_ADC_ConfigChannel(&hadc1, &sConfig) != HAL_OK)
  54. {
  55. Error_Handler();
  56. }
  57. /** Configure Regular Channel
  58. */
  59. sConfig.Channel = ADC_CHANNEL_11;
  60. sConfig.Rank = ADC_REGULAR_RANK_2;
  61. if (HAL_ADC_ConfigChannel(&hadc1, &sConfig) != HAL_OK)
  62. {
  63. Error_Handler();
  64. }
  65. /** Configure Regular Channel
  66. */
  67. sConfig.Channel = ADC_CHANNEL_12;
  68. sConfig.Rank = ADC_REGULAR_RANK_3;
  69. if (HAL_ADC_ConfigChannel(&hadc1, &sConfig) != HAL_OK)
  70. {
  71. Error_Handler();
  72. }
  73. /* USER CODE BEGIN ADC1_Init 2 */
  74. /* USER CODE END ADC1_Init 2 */
  75. }
  76. void HAL_ADC_MspInit(ADC_HandleTypeDef* adcHandle)
  77. {
  78. GPIO_InitTypeDef GPIO_InitStruct = {0};
  79. if(adcHandle->Instance==ADC1)
  80. {
  81. /* USER CODE BEGIN ADC1_MspInit 0 */
  82. /* USER CODE END ADC1_MspInit 0 */
  83. /* ADC1 clock enable */
  84. __HAL_RCC_ADC1_CLK_ENABLE();
  85. __HAL_RCC_GPIOC_CLK_ENABLE();
  86. /**ADC1 GPIO Configuration
  87. PC0 ------> ADC1_IN10
  88. PC1 ------> ADC1_IN11
  89. PC2 ------> ADC1_IN12
  90. */
  91. GPIO_InitStruct.Pin = GPIO_PIN_0|GPIO_PIN_1|GPIO_PIN_2;
  92. GPIO_InitStruct.Mode = GPIO_MODE_ANALOG;
  93. HAL_GPIO_Init(GPIOC, &GPIO_InitStruct);
  94. /* ADC1 interrupt Init */
  95. HAL_NVIC_SetPriority(ADC1_2_IRQn, 5, 0);
  96. HAL_NVIC_EnableIRQ(ADC1_2_IRQn);
  97. /* USER CODE BEGIN ADC1_MspInit 1 */
  98. /* USER CODE END ADC1_MspInit 1 */
  99. }
  100. }
  101. void HAL_ADC_MspDeInit(ADC_HandleTypeDef* adcHandle)
  102. {
  103. if(adcHandle->Instance==ADC1)
  104. {
  105. /* USER CODE BEGIN ADC1_MspDeInit 0 */
  106. /* USER CODE END ADC1_MspDeInit 0 */
  107. /* Peripheral clock disable */
  108. __HAL_RCC_ADC1_CLK_DISABLE();
  109. /**ADC1 GPIO Configuration
  110. PC0 ------> ADC1_IN10
  111. PC1 ------> ADC1_IN11
  112. PC2 ------> ADC1_IN12
  113. */
  114. HAL_GPIO_DeInit(GPIOC, GPIO_PIN_0|GPIO_PIN_1|GPIO_PIN_2);
  115. /* ADC1 interrupt Deinit */
  116. HAL_NVIC_DisableIRQ(ADC1_2_IRQn);
  117. /* USER CODE BEGIN ADC1_MspDeInit 1 */
  118. /* USER CODE END ADC1_MspDeInit 1 */
  119. }
  120. }
  121. /* USER CODE BEGIN 1 */
  122. uint8_t adc1_byte1 = 0;
  123. uint8_t adc2_byte1 = 0; // 定义一个字节变量用于存储转换结果
  124. uint8_t adc3_byte1 = 0;
  125. uint8_t adc1_byte2 = 0;
  126. uint8_t adc2_byte2 = 0; // 定义一个字节变量用于存储转换结果
  127. uint8_t adc3_byte2 = 0;
  128. uint16_t Value_old_addr2;
  129. uint16_t Value_old_addr3;
  130. uint16_t adc1_filtered = 0;
  131. uint16_t adc2_filtered = 0;
  132. uint16_t adc3_filtered = 0;
  133. uint16_t adc1_raw_buffer[FILTER_LENGTH] = {0};
  134. uint16_t adc2_raw_buffer[FILTER_LENGTH] = {0};
  135. uint16_t adc3_raw_buffer[FILTER_LENGTH] = {0};
  136. uint8_t adc1_raw_buffer_index = 0;
  137. uint8_t adc2_raw_buffer_index = 0;
  138. uint8_t adc3_raw_buffer_index = 0;
  139. uint16_t adc2_rawValue = 0;
  140. uint16_t adc3_rawValue = 0;
  141. void AdcCalibration_init(void)
  142. {
  143. Value_old_addr2 = read_flash_16(ADDR_FLASH_PAGE_124);
  144. Value_old_addr3 = read_flash_16(ADDR_FLASH_PAGE_134);
  145. Adc2_CalibrationValue = Value_old_addr2 != 0xFFFF ? Value_old_addr2 : Adc2_CalibrationValue;
  146. Adc3_CalibrationValue = Value_old_addr3 != 0xFFFF ? Value_old_addr3 : Adc3_CalibrationValue;
  147. Adc2_CalibrationValue &= 0x7FFF;
  148. Adc3_CalibrationValue &= 0x7FFF;
  149. }
  150. void ApplyFilter(uint16_t raw_data, uint16_t* filtered_data, uint16_t* raw_data_buffer, uint8_t* buffer_index)
  151. {
  152. raw_data_buffer[*buffer_index] = raw_data;
  153. uint32_t sum = 0;
  154. for (uint8_t i = 0; i < FILTER_LENGTH; i++) {
  155. sum += raw_data_buffer[i];
  156. }
  157. *filtered_data = (uint16_t)(sum / FILTER_LENGTH);
  158. *buffer_index = (*buffer_index + 1) % FILTER_LENGTH; //指向最旧的
  159. }
  160. //#define R_NOMINAL 10000.0f // 注册时NTC热敏电阻的阻值
  161. //#define T_NOMINAL 298.15f // 注册时NTC热敏电阻的温度值,转化为开尔文温标
  162. //#define B_FACTOR 3950.0f // NTC热敏电阻的B参数
  163. //float CalculateTemperature(uint16_t adc_value, float vref)
  164. //{
  165. // float voltage = adc_value * vref / 4096.0f; // 根据ADC值计算输入电压
  166. // float resistance = R_NOMINAL * (voltage / (vref - voltage)); // 根据电压计算NTC热敏电阻阻值
  167. //
  168. // float steinhart = log(resistance / R_NOMINAL) / B_FACTOR + 1.0f / T_NOMINAL; // 根据瑞利恒式计算温度
  169. // float temperature = 1.0f / steinhart - 273.15f; // 转换为摄氏温度
  170. // return temperature;
  171. //}
  172. float array1[] = {-40, -39, -38, -37, -36, -35, -34, -33, -32, -31, -30,
  173. -29, -28, -27, -26, -25, -24, -23, -22, -21, -20,
  174. -19, -18, -17, -16, -15, -14, -13, -12, -11, -10,
  175. -9, -8, -7, -6, -5, -4, -3, -2, -1, 0, 1, 2, 3,
  176. 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16,
  177. 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28,
  178. 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40,
  179. 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52,
  180. 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64,
  181. 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76,
  182. 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88,
  183. 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100,
  184. 101, 102, 103, 104, 105};
  185. float array2[] = {340.9281f, 318.8772f, 298.3978f, 279.3683f, 261.6769f,
  186. 245.2212f, 229.9072f, 215.6488f, 202.3666f, 189.9878f,
  187. 178.4456f, 167.6783f, 157.6292f, 148.2460f, 139.4807f,
  188. 131.2888f, 123.6294f, 116.4648f, 109.7600f, 103.4829f,
  189. 97.6037f, 92.0947f, 86.9305f, 82.0877f, 77.5442f, 73.2798f,
  190. 69.2759f, 65.5149f, 61.9809f, 58.6587f, 55.5345f, 52.5954f,
  191. 49.8294f, 47.2253f, 44.7727f, 42.4620f, 40.2841f, 38.2307f,
  192. 36.2940f, 34.4668f, 32.7421f, 31.1138f, 29.5759f, 28.1229f,
  193. 26.7496f, 25.4513f, 24.2234f, 23.0618f, 21.9625f, 20.9218f,
  194. 19.9364f, 19.0029f, 18.1184f, 17.2800f, 16.4852f, 15.7313f,
  195. 15.0161f, 14.3375f, 13.6932f, 13.0815f, 12.5005f, 11.9485f,
  196. 11.4239f, 10.9252f, 10.4510f, 10.0000f, 9.5709f, 9.1626f,
  197. 8.7738f, 8.4037f, 8.0512f, 7.7154f, 7.3954f, 7.0904f, 6.7996f,
  198. 6.5223f, 6.2577f, 6.0053f, 5.7645f, 5.5345f, 5.3150f, 5.1053f,
  199. 4.9050f, 4.7136f, 4.5307f, 4.3558f, 4.1887f, 4.0287f, 3.8758f,
  200. 3.7294f, 3.5893f, 3.4553f, 3.3269f, 3.2039f, 3.0862f, 2.9733f,
  201. 2.8652f, 2.7616f, 2.6622f, 2.5669f, 2.4755f, 2.3879f, 2.3038f,
  202. 2.2231f, 2.1456f, 2.0712f, 1.9998f, 1.9312f, 1.8653f, 1.8019f,
  203. 1.7411f, 1.6826f, 1.6264f, 1.5723f, 1.5203f, 1.4703f, 1.4222f,
  204. 1.3759f, 1.3313f, 1.2884f, 1.2471f, 1.2073f, 1.1690f, 1.1321f,
  205. 1.0965f, 1.0623f, 1.0293f, 0.9974f, 0.9667f, 0.9372f, 0.9086f,
  206. 0.8811f, 0.8545f, 0.8289f, 0.8042f, 0.7803f, 0.7572f, 0.7350f,
  207. 0.7135f, 0.6927f, 0.6727f, 0.6533f, 0.6346f, 0.6165f, 0.5990f,
  208. 0.5821f};
  209. uint16_t max_adc1;
  210. uint16_t max_adc2;
  211. uint16_t temperature1 = 0;
  212. void findIndexAndTemp(float resistance, float array1[], float array2[], int index2, int index1, int arrLen){
  213. uint8_t temp = 0;
  214. const float resRange = (array2[index2] - array2[index2+1]) / 10.0f;
  215. float resArr[arrLen];
  216. for(int i = 0; i < arrLen; i++){
  217. resArr[i] = array2[index2+1] + i * resRange;
  218. }
  219. int index = -1;
  220. float minDiff = 1000.0f;
  221. for(int i = 0; i < arrLen; i++){
  222. float diff = fabs(resistance - resArr[i]);
  223. index = (diff < minDiff) ? i : index;
  224. minDiff = (diff < minDiff) ? diff : minDiff;
  225. }
  226. const float tempRange = 0.1f;
  227. float tempArr[arrLen];
  228. for(int i = 0; i < arrLen; i++){
  229. tempArr[i] = array1[index1] + i * tempRange;
  230. }
  231. if(resArr[index] > 340.9821f){
  232. temperature1 = 0x8190;
  233. }
  234. else if(resArr[index] > 32.7421f){
  235. temp = fabs(tempArr[index]) * 10;
  236. temperature1 = temp | 0x8000;
  237. }
  238. else if(resArr[index] > 0.5821f){
  239. temperature1 = tempArr[index] * 10;
  240. }
  241. else{
  242. temperature1 = 0x041A;
  243. }
  244. temp = 0;
  245. }
  246. #define R_NOMINAL 10.0f // 注册时NTC热敏电阻的阻值
  247. #define T_NOMINAL 298.15f // 注册时NTC热敏电阻的温度值,转化为开尔文温标
  248. #define B_FACTOR 3950.0f // NTC热敏电阻的B参数
  249. float CalculateTemperature(uint16_t adc_value, float vref)
  250. {
  251. float voltage = adc_value * vref / 4096.0f; // 根据ADC值计算输入电压
  252. float resistance = R_NOMINAL * (voltage / (vref - voltage)); // 根据电压计算NTC热敏电阻阻值
  253. // printf("%.3f\r\n",resistance);
  254. // HAL_Delay(500);
  255. // printf("%.4f\n",array2[0]);
  256. // printf("%.4f\n",array2[0]);
  257. for (int i = 0; i < sizeof(array2) - 1; i++) {
  258. if (resistance >= array2[i+1] && resistance < array2[i]) {
  259. findIndexAndTemp(resistance, array1, array2, i, i, 10);
  260. break;
  261. }
  262. }
  263. // printf("%d\r\n",temperature1);//十进制
  264. // printf("%4x\r\n\n",temperature1);//十六进制
  265. return temperature1;
  266. }
  267. void GetADCResults(ADC_HandleTypeDef* hadc)
  268. {
  269. HAL_ADC_Start(&hadc1);
  270. HAL_ADC_PollForConversion(&hadc1, 100);
  271. uint16_t adc1_raw = HAL_ADC_GetValue(&hadc1);
  272. uint16_t temperature = CalculateTemperature(adc1_raw, 3.3);
  273. ApplyFilter((uint16_t)temperature, &adc1_filtered, adc1_raw_buffer, &adc1_raw_buffer_index);
  274. HAL_ADC_Start(&hadc1);
  275. HAL_ADC_PollForConversion(&hadc1, 100);
  276. uint16_t adc2_raw = HAL_ADC_GetValue(&hadc1);
  277. adc2_rawValue = adc2_raw;
  278. if (adc2_raw != 0) {
  279. adc2_raw += (Value_old_addr2 & 0x8000) ? Adc2_CalibrationValue : -Adc2_CalibrationValue;
  280. max_adc1 = (3*4096)/3.3;
  281. if(adc2_raw >= max_adc1){
  282. adc2_raw = max_adc1;
  283. }
  284. }
  285. ApplyFilter(adc2_raw, &adc2_filtered, adc2_raw_buffer, &adc2_raw_buffer_index);
  286. HAL_ADC_Start(&hadc1);
  287. HAL_ADC_PollForConversion(&hadc1, 100);
  288. uint16_t adc3_raw = HAL_ADC_GetValue(&hadc1);
  289. adc3_rawValue = adc3_raw;
  290. if (adc3_raw != 0) {
  291. adc3_raw += (Value_old_addr3 & 0x8000) ? Adc3_CalibrationValue : -Adc3_CalibrationValue;
  292. max_adc2 = (3*4096)/3.3;
  293. if(adc3_raw >= max_adc2){
  294. adc3_raw = max_adc2;
  295. }
  296. }
  297. ApplyFilter(adc3_raw, &adc3_filtered, adc3_raw_buffer, &adc3_raw_buffer_index);
  298. adc1_byte1 = (uint8_t)(adc1_filtered >> 8);
  299. adc1_byte2 = (uint8_t)(adc1_filtered);
  300. adc2_byte1 = (uint8_t)(adc2_filtered >> 8);
  301. adc2_byte2 = (uint8_t)(adc2_filtered);
  302. adc3_byte1 = (uint8_t)(adc3_filtered >> 8);
  303. adc3_byte2 = (uint8_t)(adc3_filtered);
  304. HAL_ADC_Stop(&hadc1); //关闭ADC以降低功耗
  305. }
  306. /* USER CODE END 1 */