main.c 24 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641
  1. /* USER CODE BEGIN Header */
  2. /**
  3. ******************************************************************************
  4. * @file : main.c
  5. * @brief : Main program body
  6. ******************************************************************************
  7. * @attention
  8. *
  9. * Copyright (c) 2023 STMicroelectronics.
  10. * All rights reserved.
  11. *
  12. * This software is licensed under terms that can be found in the LICENSE file
  13. * in the root directory of this software component.
  14. * If no LICENSE file comes with this software, it is provided AS-IS.
  15. *
  16. ******************************************************************************
  17. */
  18. /* USER CODE END Header */
  19. /* Includes ------------------------------------------------------------------*/
  20. #include "main.h"
  21. #include "cmsis_os.h"
  22. #include "adc.h"
  23. #include "dma.h"
  24. #include "tim.h"
  25. #include "usart.h"
  26. #include "gpio.h"
  27. /* Private includes ----------------------------------------------------------*/
  28. /* USER CODE BEGIN Includes */
  29. /* USER CODE END Includes */
  30. /* Private typedef -----------------------------------------------------------*/
  31. /* USER CODE BEGIN PTD */
  32. /* USER CODE END PTD */
  33. /* Private define ------------------------------------------------------------*/
  34. /* USER CODE BEGIN PD */
  35. /* USER CODE END PD */
  36. /* Private macro -------------------------------------------------------------*/
  37. /* USER CODE BEGIN PM */
  38. /* USER CODE END PM */
  39. /* Private variables ---------------------------------------------------------*/
  40. /* USER CODE BEGIN PV */
  41. int rebootTip;
  42. uint8_t data_to_send[50];
  43. uint16_t CRC_value = 0;
  44. uint16_t initial_address = 0x00C1;
  45. uint16_t BaudrateValue = 0x0000;
  46. uint32_t System_version = 0x23080800;
  47. uint8_t bufMain[128] = {0};
  48. /* USER CODE END PV */
  49. /* Private function prototypes -----------------------------------------------*/
  50. void SystemClock_Config(void);
  51. void MX_FREERTOS_Init(void);
  52. /* USER CODE BEGIN PFP */
  53. /* USER CODE END PFP */
  54. /* Private user code ---------------------------------------------------------*/
  55. /* USER CODE BEGIN 0 */
  56. /* USER CODE END 0 */
  57. /**
  58. * @brief The application entry point.
  59. * @retval int
  60. */
  61. int main(void)
  62. {
  63. /* USER CODE BEGIN 1 */
  64. /* USER CODE END 1 */
  65. /* MCU Configuration--------------------------------------------------------*/
  66. /* Reset of all peripherals, Initializes the Flash interface and the Systick. */
  67. HAL_Init();
  68. /* USER CODE BEGIN Init */
  69. /* USER CODE END Init */
  70. /* Configure the system clock */
  71. SystemClock_Config();
  72. /* USER CODE BEGIN SysInit */
  73. /* USER CODE END SysInit */
  74. /* Initialize all configured peripherals */
  75. MX_GPIO_Init();
  76. MX_DMA_Init();
  77. MX_USART1_UART_Init();
  78. MX_ADC1_Init();
  79. MX_TIM2_Init();
  80. MX_USART3_UART_Init();
  81. /* USER CODE BEGIN 2 */
  82. HAL_TIM_Base_Start_IT(&htim2);
  83. update_iaplength(LENGTH_ADDR);
  84. #if IR_ROM1 == 0x08000000
  85. Start_BootLoader();
  86. #else
  87. SCB->VTOR = 0x08020000;
  88. #endif
  89. //更新标定数据
  90. AdcCalibration_init();
  91. updateiapMd5(StartMode_Addr);
  92. update_sysVersion(StartMode_Addr+14);
  93. read_new_address(addr_FLASH_ADDR);
  94. updatePbStatus(read_flash_16(pbstatus_FLASH_ADDR));
  95. update_baudrate(read_flash_16(baudrate_FLASH_ADDR));
  96. //更新结束
  97. int txLen = sprintf((char *)USART_IAP_RX, "app1");
  98. HAL_UART_Transmit_IT(&huart1,USART_IAP_RX,txLen);
  99. HAL_UART_Receive_DMA(&huart1,USART_PUB_RX,RX_BUF_SIZE);
  100. __HAL_UART_ENABLE_IT(&huart1, UART_IT_IDLE);
  101. /* USER CODE END 2 */
  102. /* Call init function for freertos objects (in freertos.c) */
  103. MX_FREERTOS_Init();
  104. /* Start scheduler */
  105. osKernelStart();
  106. /* We should never get here as control is now taken by the scheduler */
  107. /* Infinite loop */
  108. /* USER CODE BEGIN WHILE */
  109. while (1)
  110. {
  111. /* USER CODE END WHILE */
  112. /* USER CODE BEGIN 3 */
  113. }
  114. /* USER CODE END 3 */
  115. }
  116. /**
  117. * @brief System Clock Configuration
  118. * @retval None
  119. */
  120. void SystemClock_Config(void)
  121. {
  122. RCC_OscInitTypeDef RCC_OscInitStruct = {0};
  123. RCC_ClkInitTypeDef RCC_ClkInitStruct = {0};
  124. RCC_PeriphCLKInitTypeDef PeriphClkInit = {0};
  125. /** Initializes the RCC Oscillators according to the specified parameters
  126. * in the RCC_OscInitTypeDef structure.
  127. */
  128. RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSE;
  129. RCC_OscInitStruct.HSEState = RCC_HSE_ON;
  130. RCC_OscInitStruct.HSEPredivValue = RCC_HSE_PREDIV_DIV1;
  131. RCC_OscInitStruct.HSIState = RCC_HSI_ON;
  132. RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;
  133. RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSE;
  134. RCC_OscInitStruct.PLL.PLLMUL = RCC_PLL_MUL2;
  135. if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK)
  136. {
  137. Error_Handler();
  138. }
  139. /** Initializes the CPU, AHB and APB buses clocks
  140. */
  141. RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_SYSCLK
  142. |RCC_CLOCKTYPE_PCLK1|RCC_CLOCKTYPE_PCLK2;
  143. RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;
  144. RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV2;
  145. RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV2;
  146. RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1;
  147. if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_0) != HAL_OK)
  148. {
  149. Error_Handler();
  150. }
  151. PeriphClkInit.PeriphClockSelection = RCC_PERIPHCLK_ADC;
  152. PeriphClkInit.AdcClockSelection = RCC_ADCPCLK2_DIV4;
  153. if (HAL_RCCEx_PeriphCLKConfig(&PeriphClkInit) != HAL_OK)
  154. {
  155. Error_Handler();
  156. }
  157. }
  158. /* USER CODE BEGIN 4 */
  159. uint16_t read_flash_16(uint32_t addr){
  160. uint16_t data = *(volatile uint16_t*)addr; // 从Flash中读取2个字节
  161. return data;
  162. }
  163. uint32_t read_flash_32(uint32_t addr){
  164. uint32_t data = *(volatile uint32_t*)addr;
  165. return data;
  166. }
  167. void read_new_address(uint32_t addr){
  168. uint16_t init_address = read_flash_16(addr);
  169. if(init_address == 0xFFFF) {
  170. initial_address = initial_address;
  171. } else {
  172. initial_address = init_address; // 读取新地址并赋值给initial_address
  173. }
  174. }
  175. void erase_flash(uint32_t ADDR_FLASH){ //进行擦除
  176. FLASH_EraseInitTypeDef erase_init;
  177. erase_init.TypeErase = FLASH_TYPEERASE_PAGES; // 擦除类型为页擦除
  178. erase_init.PageAddress = ADDR_FLASH;
  179. erase_init.NbPages = 1; // 擦除的页数
  180. uint32_t page_error = 0;
  181. HAL_FLASH_Unlock(); // 解锁Flash
  182. HAL_StatusTypeDef status = HAL_FLASHEx_Erase(&erase_init, &page_error); // 执行擦除操作
  183. HAL_FLASH_Lock(); // 上锁Flash
  184. if(status == HAL_OK){
  185. if(ADDR_FLASH == addr_FLASH_ADDR) {
  186. initial_address = 0; // 将initial_address清零
  187. }
  188. else if(ADDR_FLASH == pbstatus_FLASH_ADDR) {
  189. gpiobStatus = 0; // 将pb_status清零
  190. }
  191. else if(ADDR_FLASH == baudrate_FLASH_ADDR) {
  192. BaudrateValue = 0xFFFF;
  193. }
  194. else if(ADDR_FLASH == ADC1_FLASH_ADDR) {
  195. Adc2_CalibrationValue = 0x0000; // 清零
  196. }
  197. else if(ADDR_FLASH == ADC2_FLASH_ADDR) {
  198. Adc3_CalibrationValue = 0x0000; // 清零
  199. }
  200. }
  201. }
  202. void Write_Information(uint32_t addr, uint8_t* rx_buffer, uint8_t buffer_index) {
  203. uint16_t newValue = 0;
  204. erase_flash(addr);
  205. HAL_FLASH_Unlock(); // 解锁Flash
  206. if (addr == addr_FLASH_ADDR) { // 写入地址到Flash
  207. newValue = rx_buffer[buffer_index];
  208. HAL_StatusTypeDef status = HAL_FLASH_Program(FLASH_TYPEPROGRAM_HALFWORD, addr_FLASH_ADDR, newValue);
  209. if (status == HAL_OK) {
  210. initial_address = newValue; // 将新地址赋值给initial_address
  211. }
  212. }
  213. else if (addr == pbstatus_FLASH_ADDR) { // 写入PB状态到Flash
  214. newValue = rx_buffer[buffer_index];
  215. HAL_StatusTypeDef status = HAL_FLASH_Program(FLASH_TYPEPROGRAM_HALFWORD, pbstatus_FLASH_ADDR, newValue);
  216. if (status == HAL_OK) {
  217. gpiobStatus = newValue; // 将新状态赋值给gpiobStatus
  218. }
  219. }
  220. else if (addr == baudrate_FLASH_ADDR) { // 写入波特率到Flash
  221. newValue = rx_buffer[buffer_index];
  222. HAL_StatusTypeDef status = HAL_FLASH_Program(FLASH_TYPEPROGRAM_HALFWORD, baudrate_FLASH_ADDR, newValue);
  223. if (status == HAL_OK) {
  224. BaudrateValue = newValue; // 将新状态赋值给BaudrateValue
  225. }
  226. }
  227. else if (addr == ADC1_FLASH_ADDR || addr == ADC2_FLASH_ADDR) { // 写入ADC校准值到Flash
  228. uint16_t Standard_value = (0.6 / (3.3 / 4096));
  229. if (addr == ADC1_FLASH_ADDR) {
  230. if (adc2_rawValue >= Standard_value) {
  231. newValue = adc2_rawValue - Standard_value;
  232. } else {
  233. newValue = Standard_value - adc2_rawValue;
  234. newValue |= 0x8000;
  235. }
  236. HAL_StatusTypeDef status = HAL_FLASH_Program(FLASH_TYPEPROGRAM_HALFWORD, ADC1_FLASH_ADDR, newValue);
  237. if (status == HAL_OK) {
  238. Adc2_CalibrationValue = newValue & 0x7FFF;
  239. Value_old_addr2 = newValue;
  240. }
  241. }
  242. else if (addr == ADC2_FLASH_ADDR) {
  243. if (adc3_rawValue >= Standard_value) {
  244. newValue = adc3_rawValue - Standard_value;
  245. } else {
  246. newValue = Standard_value - adc3_rawValue;
  247. newValue |= 0x8000;
  248. }
  249. HAL_StatusTypeDef status = HAL_FLASH_Program(FLASH_TYPEPROGRAM_HALFWORD, ADC2_FLASH_ADDR, newValue);
  250. if (status == HAL_OK) {
  251. Adc3_CalibrationValue = newValue & 0x7FFF;
  252. Value_old_addr3 = newValue;
  253. }
  254. }
  255. }
  256. HAL_FLASH_Lock(); // 上锁Flash
  257. }
  258. void clear_buf(void){
  259. memset(USART_MODBUS_RX, 0, sizeof(USART_MODBUS_RX));
  260. memset(USART_PUB_RX, 0, RX_BUF_SIZE);
  261. USART_MODBUS_FLAG = 0;
  262. USART_IAP_FLAG = 0;
  263. }
  264. void re_receive(void){
  265. HAL_UART_AbortReceive(&huart1);
  266. HAL_UART_Receive_DMA(&huart1, USART_PUB_RX, RX_BUF_SIZE);
  267. }
  268. void receive_modbus_7(uint16_t addr, uint8_t funcode, uint8_t byteNum, uint16_t byte, int byteSize){
  269. uint8_t data_to_send[] = {(uint8_t)addr, funcode, byteNum, (uint8_t)(byte >> 8), (uint8_t)(byte & 0xFF), 0x00, 0x00};
  270. uint16_t CRC_value = calculate_crc(data_to_send, (byteSize - 2));
  271. data_to_send[(byteSize - 2)] = (uint8_t)(CRC_value & 0xFF);
  272. data_to_send[(byteSize - 1)] = (uint8_t)(CRC_value >> 8);
  273. HAL_UART_Transmit(&huart1, data_to_send, byteSize, byteSize);
  274. clear_buf();
  275. re_receive();
  276. }
  277. void receive_modbus_8(uint16_t addr, uint8_t funcode, uint16_t startaddr, uint16_t reg){
  278. uint8_t data_to_send[] = {(uint8_t)addr, funcode, (uint8_t)(startaddr >> 8), (uint8_t)(startaddr & 0xFF), \
  279. (uint8_t)(reg >> 8), (uint8_t)(reg & 0xFF), 0x00, 0x00};
  280. uint16_t CRC_value = calculate_crc(data_to_send, 6);
  281. data_to_send[6] = (uint8_t)(CRC_value & 0xFF);
  282. data_to_send[7] = (uint8_t)(CRC_value >> 8);
  283. HAL_UART_Transmit(&huart1, data_to_send, 8, 7);
  284. clear_buf();
  285. re_receive();
  286. }
  287. void receive_modbus_9_1(uint16_t addr, uint8_t funcode, uint16_t startaddr, uint16_t reg, uint8_t byteNum){
  288. uint8_t data_to_send[] = {(uint8_t)addr, funcode, (uint8_t)(startaddr >> 8), (uint8_t)(startaddr & 0xFF), \
  289. (uint8_t)(reg >> 8), (uint8_t)(reg & 0xFF), byteNum, 0x00, 0x00};
  290. uint16_t CRC_value = calculate_crc(data_to_send, 7);
  291. data_to_send[7] = (uint8_t)(CRC_value & 0xFF);
  292. data_to_send[8] = (uint8_t)(CRC_value >> 8);
  293. HAL_UART_Transmit(&huart1, data_to_send, 9, 9);
  294. clear_buf();
  295. re_receive();
  296. }
  297. void receive_modbus_9(uint16_t addr, uint8_t funcode, uint8_t byteNum, uint16_t byte1, uint16_t byte2, int byteSize){
  298. uint8_t data_to_send[] = {(uint8_t)addr, funcode, byteNum, (uint8_t)(byte1 >> 8), (uint8_t)(byte1 & 0xFF), (uint8_t)(byte2 >> 8), \
  299. (uint8_t)(byte2 & 0xFF), 0x00, 0x00};
  300. uint16_t CRC_value = calculate_crc(data_to_send, (byteSize - 2));
  301. data_to_send[(byteSize - 2)] = (uint8_t)(CRC_value & 0xFF);
  302. data_to_send[(byteSize - 1)] = (uint8_t)(CRC_value >> 8);
  303. HAL_UART_Transmit(&huart1, data_to_send, byteSize, (byteSize - 1));
  304. clear_buf();
  305. re_receive();
  306. }
  307. void receive_modbus_11(uint16_t addr, uint8_t funcode, uint8_t byteNum, uint16_t byte1, uint16_t byte2, uint16_t byte3, int byteSize){
  308. uint8_t data_to_send[] = {(uint8_t)addr, funcode, byteNum, (uint8_t)(byte1 >> 8), (uint8_t)(byte1 & 0xFF), (uint8_t)(byte2 >> 8), \
  309. (uint8_t)(byte2 & 0xFF), (uint8_t)(byte3 >> 8), (uint8_t)(byte3 & 0xFF), 0x00, 0x00};
  310. uint16_t CRC_value = calculate_crc(data_to_send, (byteSize - 2));
  311. data_to_send[(byteSize - 2)] = (uint8_t)(CRC_value & 0xFF);
  312. data_to_send[(byteSize - 1)] = (uint8_t)(CRC_value >> 8);
  313. HAL_UART_Transmit(&huart1, data_to_send, byteSize, (byteSize - 1));
  314. clear_buf();
  315. re_receive();
  316. }
  317. void receive_modbus_13(uint16_t addr, uint8_t funcode, uint8_t byteNum, uint16_t byte1, uint16_t byte2, uint16_t byte3, uint16_t byte4, int byteSize){
  318. uint8_t data_to_send[] = {(uint8_t)addr, funcode, byteNum, (uint8_t)(byte1 >> 8), (uint8_t)(byte1 & 0xFF), (uint8_t)(byte2 >> 8), \
  319. (uint8_t)(byte2 & 0xFF), (uint8_t)(byte3 >> 8), (uint8_t)(byte3 & 0xFF), (uint8_t)(byte4 >> 8), (uint8_t)(byte4 & 0xFF), 0x00, 0x00};
  320. uint16_t CRC_value = calculate_crc(data_to_send, (byteSize - 2));
  321. data_to_send[(byteSize - 2)] = (uint8_t)(CRC_value & 0xFF);
  322. data_to_send[(byteSize - 1)] = (uint8_t)(CRC_value >> 8);
  323. HAL_UART_Transmit(&huart1, data_to_send, byteSize, (byteSize - 1));
  324. clear_buf();
  325. re_receive();
  326. }
  327. void receive_modbus_15(uint16_t addr, uint8_t funcode, uint8_t byteNum, uint16_t byte1, uint16_t byte2, uint16_t byte3, uint16_t byte4, uint16_t byte5, int byteSize){
  328. uint8_t data_to_send[] = {(uint8_t)addr, funcode, byteNum, (uint8_t)(byte1 >> 8), (uint8_t)(byte1 & 0xFF), (uint8_t)(byte2 >> 8), \
  329. (uint8_t)(byte2 & 0xFF), (uint8_t)(byte3 >> 8), (uint8_t)(byte3 & 0xFF), (uint8_t)(byte4 >> 8), (uint8_t)(byte4 & 0xFF), (uint8_t)(byte5 >> 8),\
  330. (uint8_t)(byte5 & 0xFF), 0x00, 0x00};
  331. uint16_t CRC_value = calculate_crc(data_to_send, (byteSize - 2));
  332. data_to_send[(byteSize - 2)] = (uint8_t)(CRC_value & 0xFF);
  333. data_to_send[(byteSize - 1)] = (uint8_t)(CRC_value >> 8);
  334. HAL_UART_Transmit(&huart1, data_to_send, byteSize, (byteSize - 1));
  335. clear_buf();
  336. re_receive();
  337. }
  338. void ModBus(void) {
  339. if (USART_MODBUS_FLAG == 1 && (calculate_crc(USART_MODBUS_RX,6) == (USART_MODBUS_RX[7] << 8 | USART_MODBUS_RX[6])) && USART_PUB_LENGTH < 10) {
  340. if(USART_MODBUS_RX[0] == (uint8_t)initial_address && USART_MODBUS_RX[1] == 0x03 && USART_MODBUS_RX[2] == 0x00 \
  341. && USART_MODBUS_RX[3] == 0x01 && USART_MODBUS_RX[4] == 0x00 && USART_MODBUS_RX[5] == 0x01){
  342. receive_modbus_7(initial_address, 0x03, 0x02, gpioaStatus, 7);
  343. }
  344. else if(USART_MODBUS_RX[0] == (uint8_t)initial_address && USART_MODBUS_RX[1] == 0x03 && USART_MODBUS_RX[2] == 0x00 \
  345. && USART_MODBUS_RX[3] == 0x02 && USART_MODBUS_RX[4] == 0x00 && USART_MODBUS_RX[5] == 0x01){
  346. receive_modbus_7(initial_address, 0x03, 0x02, gpiobStatus, 7);
  347. }
  348. else if(USART_MODBUS_RX[0] == (uint8_t)initial_address && USART_MODBUS_RX[1] == 0x03 && USART_MODBUS_RX[2] == 0x00 \
  349. && USART_MODBUS_RX[3] == 0x03 && USART_MODBUS_RX[4] == 0x00 && USART_MODBUS_RX[5] == 0x01){
  350. receive_modbus_7(initial_address, 0x03, 0x02, adc2_filtered, 7);
  351. }
  352. else if(USART_MODBUS_RX[0] == (uint8_t)initial_address && USART_MODBUS_RX[1] == 0x03 && USART_MODBUS_RX[2] == 0x00 \
  353. && USART_MODBUS_RX[3] == 0x04 && USART_MODBUS_RX[4] == 0x00 && USART_MODBUS_RX[5] == 0x01){
  354. receive_modbus_7(initial_address, 0x03, 0x02, adc3_filtered, 7);
  355. }
  356. else if(USART_MODBUS_RX[0] == (uint8_t)initial_address && USART_MODBUS_RX[1] == 0x03 && USART_MODBUS_RX[2] == 0x00 \
  357. && USART_MODBUS_RX[3] == 0x05 && USART_MODBUS_RX[4] == 0x00 && USART_MODBUS_RX[5] == 0x01){
  358. receive_modbus_7(initial_address, 0x03, 0x02, adc1_filtered, 7);
  359. }
  360. else if(USART_MODBUS_RX[0] == (uint8_t)initial_address && USART_MODBUS_RX[1] == 0x03 && USART_MODBUS_RX[2] == 0x00 \
  361. && USART_MODBUS_RX[3] == 0x01 && USART_MODBUS_RX[4] == 0x00 && USART_MODBUS_RX[5] == 0x02){
  362. receive_modbus_9(initial_address, 0x03, 0x04, gpioaStatus, gpiobStatus, 9);
  363. }
  364. else if(USART_MODBUS_RX[0] == (uint8_t)initial_address && USART_MODBUS_RX[1] == 0x03 && USART_MODBUS_RX[2] == 0x00 \
  365. && USART_MODBUS_RX[3] == 0x01 && USART_MODBUS_RX[4] == 0x00 && USART_MODBUS_RX[5] == 0x03){
  366. receive_modbus_11(initial_address, 0x03, 0x06, gpioaStatus, gpiobStatus, adc2_filtered, 11);
  367. }
  368. else if(USART_MODBUS_RX[0] == (uint8_t)initial_address && USART_MODBUS_RX[1] == 0x03 && USART_MODBUS_RX[2] == 0x00 \
  369. && USART_MODBUS_RX[3] == 0x01 && USART_MODBUS_RX[4] == 0x00 && USART_MODBUS_RX[5] == 0x04){
  370. receive_modbus_13(initial_address, 0x03, 0x08, gpioaStatus, gpiobStatus, adc2_filtered, adc3_filtered, 13);
  371. }
  372. else if(USART_MODBUS_RX[0] == (uint8_t)initial_address && USART_MODBUS_RX[1] == 0x03 && USART_MODBUS_RX[2] == 0x00 \
  373. && USART_MODBUS_RX[3] == 0x01 && USART_MODBUS_RX[4] == 0x00 && USART_MODBUS_RX[5] == 0x05){
  374. receive_modbus_15(initial_address, 0x03, 0x0A, gpioaStatus, gpiobStatus, adc2_filtered, adc3_filtered, adc1_filtered, 15);
  375. }
  376. else if(USART_MODBUS_RX[0] == (uint8_t)initial_address && USART_MODBUS_RX[1] == 0x03 && USART_MODBUS_RX[2] == 0x00 \
  377. && USART_MODBUS_RX[3] == 0x02 && USART_MODBUS_RX[4] == 0x00 && USART_MODBUS_RX[5] == 0x02){
  378. receive_modbus_9(initial_address, 0x03, 0x04, gpiobStatus, adc2_filtered, 9);
  379. }
  380. else if(USART_MODBUS_RX[0] == (uint8_t)initial_address && USART_MODBUS_RX[1] == 0x03 && USART_MODBUS_RX[2] == 0x00 \
  381. && USART_MODBUS_RX[3] == 0x02 && USART_MODBUS_RX[4] == 0x00 && USART_MODBUS_RX[5] == 0x03){
  382. receive_modbus_11(initial_address, 0x03, 0x06, gpiobStatus, adc2_filtered, adc3_filtered, 11);
  383. }
  384. else if(USART_MODBUS_RX[0] == (uint8_t)initial_address && USART_MODBUS_RX[1] == 0x03 && USART_MODBUS_RX[2] == 0x00 \
  385. && USART_MODBUS_RX[3] == 0x02 && USART_MODBUS_RX[4] == 0x00 && USART_MODBUS_RX[5] == 0x04){
  386. receive_modbus_13(initial_address, 0x03, 0x08, gpiobStatus, adc2_filtered, adc3_filtered, adc1_filtered, 13);
  387. }
  388. else if(USART_MODBUS_RX[0] == (uint8_t)initial_address && USART_MODBUS_RX[1] == 0x03 && USART_MODBUS_RX[2] == 0x00 \
  389. && USART_MODBUS_RX[3] == 0x03 && USART_MODBUS_RX[4] == 0x00 && USART_MODBUS_RX[5] == 0x02){
  390. receive_modbus_9(initial_address, 0x03, 0x04, adc2_filtered, adc3_filtered, 9);
  391. }
  392. else if(USART_MODBUS_RX[0] == (uint8_t)initial_address && USART_MODBUS_RX[1] == 0x03 && USART_MODBUS_RX[2] == 0x00 \
  393. && USART_MODBUS_RX[3] == 0x03 && USART_MODBUS_RX[4] == 0x00 && USART_MODBUS_RX[5] == 0x03){
  394. receive_modbus_11(initial_address, 0x03, 0x06, adc2_filtered, adc3_filtered, adc1_filtered, 11);
  395. }
  396. else if(USART_MODBUS_RX[0] == (uint8_t)initial_address && USART_MODBUS_RX[1] == 0x03 && USART_MODBUS_RX[2] == 0x00 \
  397. && USART_MODBUS_RX[3] == 0x04 && USART_MODBUS_RX[4] == 0x00 && USART_MODBUS_RX[5] == 0x02){
  398. receive_modbus_9(initial_address, 0x03, 0x04, adc3_filtered, adc1_filtered, 9);
  399. }
  400. else if(USART_MODBUS_RX[0] == 0xFA && USART_MODBUS_RX[1] == 0x03 && USART_MODBUS_RX[2] == 0x00 && USART_MODBUS_RX[3] == 0xAA \
  401. && USART_MODBUS_RX[4] == 0x00 && USART_MODBUS_RX[5] == 0x01){
  402. receive_modbus_7(0xFA, 0x03, 0x02, initial_address, 7);
  403. }
  404. else if(USART_MODBUS_RX[0] == (uint8_t)initial_address && USART_MODBUS_RX[1] == 0x03 && USART_MODBUS_RX[2] == 0x50 \
  405. && USART_MODBUS_RX[3] == 0x00 && USART_MODBUS_RX[4] == 0x00 && USART_MODBUS_RX[5] == 0x02){
  406. receive_modbus_9(initial_address, 0x03, 0x04, ((System_version >> 16) & 0xFFFF), (System_version & 0xFFFF), 9);
  407. }
  408. else if(USART_MODBUS_RX[0] == (uint8_t)initial_address && USART_MODBUS_RX[1] == 0x03 && USART_MODBUS_RX[2] == 0x50 \
  409. && USART_MODBUS_RX[3] == 0x02 && USART_MODBUS_RX[4] == 0x00 && USART_MODBUS_RX[5] == 0x02){//断点地址
  410. updatecuraddr(CURaddr_PACKAGE_ADDR);
  411. receive_modbus_9(initial_address, 0x03, 0x04, ((nowcurAddr1 >> 16) & 0xFFFF), (nowcurAddr1 & 0xFFFF), 9);
  412. }
  413. else if(USART_MODBUS_RX[0] == (uint8_t)initial_address && USART_MODBUS_RX[1] == 0x03 && USART_MODBUS_RX[2] == 0x50 \
  414. && USART_MODBUS_RX[3] == 0x04 && USART_MODBUS_RX[4] == 0x00 && USART_MODBUS_RX[5] == 0x01){//断点包索引
  415. updatecurpack(CURaddr_PACKAGE_ADDR);
  416. receive_modbus_7(initial_address, 0x03, 0x02, nowcurpack, 7);
  417. }
  418. else if(USART_MODBUS_RX[0] == (uint8_t)initial_address && USART_MODBUS_RX[1] == 0x06 && USART_MODBUS_RX[2] == 0x00 \
  419. && USART_MODBUS_RX[3] == 0x02 && USART_MODBUS_RX[4] == 0x00){
  420. updatePbStatus(USART_MODBUS_RX[5]);
  421. Write_Information(pbstatus_FLASH_ADDR, USART_MODBUS_RX, 5);
  422. receive_modbus_8(initial_address, USART_MODBUS_RX[1], ((uint16_t)USART_MODBUS_RX[2] << 8) | USART_MODBUS_RX[3], \
  423. ((uint16_t)USART_MODBUS_RX[4] << 8) | USART_MODBUS_RX[5]);
  424. }
  425. else if(USART_MODBUS_RX[0] == (uint8_t)initial_address && USART_MODBUS_RX[1] == 0x06 && USART_MODBUS_RX[2] == 0x00 \
  426. && USART_MODBUS_RX[3] == 0x0A && USART_MODBUS_RX[4] == 0x00 && USART_MODBUS_RX[5] == 0x01){
  427. Write_Information(ADC1_FLASH_ADDR, USART_MODBUS_RX, 0);
  428. receive_modbus_8(initial_address, USART_MODBUS_RX[1], ((uint16_t)USART_MODBUS_RX[2] << 8) | USART_MODBUS_RX[3], \
  429. ((uint16_t)USART_MODBUS_RX[4] << 8) | USART_MODBUS_RX[5]);
  430. }
  431. else if(USART_MODBUS_RX[0] == (uint8_t)initial_address && USART_MODBUS_RX[1] == 0x06 && USART_MODBUS_RX[2] == 0x00 \
  432. && USART_MODBUS_RX[3] == 0x0B && USART_MODBUS_RX[4] == 0x00 && USART_MODBUS_RX[5] == 0x01){
  433. Write_Information(ADC2_FLASH_ADDR, USART_MODBUS_RX, 0);
  434. receive_modbus_8(initial_address, USART_MODBUS_RX[1], ((uint16_t)USART_MODBUS_RX[2] << 8) | USART_MODBUS_RX[3], \
  435. ((uint16_t)USART_MODBUS_RX[4] << 8) | USART_MODBUS_RX[5]);
  436. }
  437. else if(USART_MODBUS_RX[0] == (uint8_t)initial_address && USART_MODBUS_RX[1] == 0x06 && USART_MODBUS_RX[2] == 0x00 \
  438. && USART_MODBUS_RX[3] == 0x0C && USART_MODBUS_RX[4] == 0x00){
  439. update_baudrate(USART_MODBUS_RX[5]);
  440. Write_Information(baudrate_FLASH_ADDR, USART_MODBUS_RX, 5);
  441. receive_modbus_8(initial_address, USART_MODBUS_RX[1], ((uint16_t)USART_MODBUS_RX[2] << 8) | USART_MODBUS_RX[3], \
  442. ((uint16_t)USART_MODBUS_RX[4] << 8) | USART_MODBUS_RX[5]);
  443. }
  444. else if(USART_MODBUS_RX[0] == (uint8_t)initial_address && USART_MODBUS_RX[1] == 0x06 && USART_MODBUS_RX[2] == 0x00 \
  445. && USART_MODBUS_RX[3] == 0xAA && USART_MODBUS_RX[4] == 0x00){
  446. Write_Information(addr_FLASH_ADDR, USART_MODBUS_RX, 5);
  447. receive_modbus_8(initial_address, USART_MODBUS_RX[1], ((uint16_t)USART_MODBUS_RX[2] << 8) | USART_MODBUS_RX[3], \
  448. ((uint16_t)USART_MODBUS_RX[4] << 8) | USART_MODBUS_RX[5]);
  449. }
  450. else if(USART_MODBUS_RX[0] == (uint8_t)initial_address && USART_MODBUS_RX[1] == 0x06 && USART_MODBUS_RX[2] == 0x00 \
  451. && USART_MODBUS_RX[3] == 0xCC && USART_MODBUS_RX[4] == 0xA5 && USART_MODBUS_RX[5] == 0x5A){
  452. clear_buf();
  453. HAL_NVIC_SystemReset();
  454. }
  455. else {
  456. clear_buf();
  457. re_receive();
  458. }
  459. }
  460. }
  461. /* USER CODE END 4 */
  462. /**
  463. * @brief Period elapsed callback in non blocking mode
  464. * @note This function is called when TIM3 interrupt took place, inside
  465. * HAL_TIM_IRQHandler(). It makes a direct call to HAL_IncTick() to increment
  466. * a global variable "uwTick" used as application time base.
  467. * @param htim : TIM handle
  468. * @retval None
  469. */
  470. void HAL_TIM_PeriodElapsedCallback(TIM_HandleTypeDef *htim)
  471. {
  472. /* USER CODE BEGIN Callback 0 */
  473. /* USER CODE END Callback 0 */
  474. if (htim->Instance == TIM3) {
  475. HAL_IncTick();
  476. }
  477. /* USER CODE BEGIN Callback 1 */
  478. /* USER CODE END Callback 1 */
  479. }
  480. /**
  481. * @brief This function is executed in case of error occurrence.
  482. * @retval None
  483. */
  484. void Error_Handler(void)
  485. {
  486. /* USER CODE BEGIN Error_Handler_Debug */
  487. /* User can add his own implementation to report the HAL error return state */
  488. __disable_irq();
  489. while (1)
  490. {
  491. }
  492. /* USER CODE END Error_Handler_Debug */
  493. }
  494. #ifdef USE_FULL_ASSERT
  495. /**
  496. * @brief Reports the name of the source file and the source line number
  497. * where the assert_param error has occurred.
  498. * @param file: pointer to the source file name
  499. * @param line: assert_param error line source number
  500. * @retval None
  501. */
  502. void assert_failed(uint8_t *file, uint32_t line)
  503. {
  504. /* USER CODE BEGIN 6 */
  505. /* User can add his own implementation to report the file name and line number,
  506. ex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */
  507. /* USER CODE END 6 */
  508. }
  509. #endif /* USE_FULL_ASSERT */