/* USER CODE BEGIN Header */ /** ****************************************************************************** * @file : main.c * @brief : Main program body ****************************************************************************** * @attention * * Copyright (c) 2023 STMicroelectronics. * All rights reserved. * * This software is licensed under terms that can be found in the LICENSE file * in the root directory of this software component. * If no LICENSE file comes with this software, it is provided AS-IS. * ****************************************************************************** */ /* USER CODE END Header */ /* Includes ------------------------------------------------------------------*/ #include "main.h" #include "cmsis_os.h" #include "adc.h" #include "dma.h" #include "tim.h" #include "usart.h" #include "gpio.h" /* Private includes ----------------------------------------------------------*/ /* USER CODE BEGIN Includes */ /* USER CODE END Includes */ /* Private typedef -----------------------------------------------------------*/ /* USER CODE BEGIN PTD */ /* USER CODE END PTD */ /* Private define ------------------------------------------------------------*/ /* USER CODE BEGIN PD */ /* USER CODE END PD */ /* Private macro -------------------------------------------------------------*/ /* USER CODE BEGIN PM */ /* USER CODE END PM */ /* Private variables ---------------------------------------------------------*/ /* USER CODE BEGIN PV */ int rebootTip; uint8_t data_to_send[50]; uint16_t CRC_value = 0; uint16_t initial_address = 0x00C1; uint16_t BaudrateValue = 0x0000; uint32_t System_version = 0x23080700; uint8_t bufMain[128] = {0}; uint32_t scb; /* USER CODE END PV */ /* Private function prototypes -----------------------------------------------*/ void SystemClock_Config(void); void MX_FREERTOS_Init(void); /* USER CODE BEGIN PFP */ /* USER CODE END PFP */ /* Private user code ---------------------------------------------------------*/ /* USER CODE BEGIN 0 */ /* USER CODE END 0 */ /** * @brief The application entry point. * @retval int */ int main(void) { /* USER CODE BEGIN 1 */ /* USER CODE END 1 */ /* MCU Configuration--------------------------------------------------------*/ /* Reset of all peripherals, Initializes the Flash interface and the Systick. */ HAL_Init(); /* USER CODE BEGIN Init */ /* USER CODE END Init */ /* Configure the system clock */ SystemClock_Config(); /* USER CODE BEGIN SysInit */ /* USER CODE END SysInit */ /* Initialize all configured peripherals */ MX_GPIO_Init(); MX_DMA_Init(); MX_USART1_UART_Init(); MX_ADC1_Init(); MX_TIM2_Init(); MX_USART3_UART_Init(); /* USER CODE BEGIN 2 */ HAL_TIM_Base_Start_IT(&htim2); update_iaplength(LENGTH_ADDR); #if IR_ROM1 == 0x08000000 Start_BootLoader(); #else SCB->VTOR = 0x08020000; __set_PRIMASK(0); #endif //更新标定数据 AdcCalibration_init(); updateiapMd5(StartMode_Addr); update_sysVersion(StartMode_Addr+14); read_new_address(addr_FLASH_ADDR); updatePbStatus(read_flash_16(pbstatus_FLASH_ADDR)); update_baudrate(read_flash_16(baudrate_FLASH_ADDR)); //更新结束 // scb = SCB->VTOR; // if(scb==0x08020000) // { // // } int txLen = sprintf((char *)USART_IAP_RX, "app1"); HAL_UART_Transmit_IT(&huart1,USART_IAP_RX,txLen); // rebootTip = sprintf((char*)bufMain, "reboot ok"); // HAL_UART_Transmit(&huart1, bufMain, rebootTip, 300); HAL_UART_Receive_DMA(&huart1,USART_PUB_RX,RX_BUF_SIZE); __HAL_UART_ENABLE_IT(&huart1, UART_IT_IDLE); /* USER CODE END 2 */ /* Call init function for freertos objects (in freertos.c) */ MX_FREERTOS_Init(); /* Start scheduler */ osKernelStart(); /* We should never get here as control is now taken by the scheduler */ /* Infinite loop */ /* USER CODE BEGIN WHILE */ while (1) { /* USER CODE END WHILE */ /* USER CODE BEGIN 3 */ } /* USER CODE END 3 */ } /** * @brief System Clock Configuration * @retval None */ void SystemClock_Config(void) { RCC_OscInitTypeDef RCC_OscInitStruct = {0}; RCC_ClkInitTypeDef RCC_ClkInitStruct = {0}; RCC_PeriphCLKInitTypeDef PeriphClkInit = {0}; /** Initializes the RCC Oscillators according to the specified parameters * in the RCC_OscInitTypeDef structure. */ RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSE; RCC_OscInitStruct.HSEState = RCC_HSE_ON; RCC_OscInitStruct.HSEPredivValue = RCC_HSE_PREDIV_DIV1; RCC_OscInitStruct.HSIState = RCC_HSI_ON; RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON; RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSE; RCC_OscInitStruct.PLL.PLLMUL = RCC_PLL_MUL2; if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK) { Error_Handler(); } /** Initializes the CPU, AHB and APB buses clocks */ RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_SYSCLK |RCC_CLOCKTYPE_PCLK1|RCC_CLOCKTYPE_PCLK2; RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK; RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV2; RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV2; RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1; if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_0) != HAL_OK) { Error_Handler(); } PeriphClkInit.PeriphClockSelection = RCC_PERIPHCLK_ADC; PeriphClkInit.AdcClockSelection = RCC_ADCPCLK2_DIV4; if (HAL_RCCEx_PeriphCLKConfig(&PeriphClkInit) != HAL_OK) { Error_Handler(); } } /* USER CODE BEGIN 4 */ uint16_t read_flash_16(uint32_t addr){ uint16_t data = *(volatile uint16_t*)addr; // 从Flash中读取2个字节 return data; } uint32_t read_flash_32(uint32_t addr){ uint32_t data = *(volatile uint32_t*)addr; return data; } void read_new_address(uint32_t addr){ uint16_t init_address = read_flash_16(addr); if(init_address == 0xFFFF) { initial_address = initial_address; } else { initial_address = init_address; // 读取新地址并赋值给initial_address } } void erase_flash(uint32_t ADDR_FLASH){ //进行擦除 FLASH_EraseInitTypeDef erase_init; erase_init.TypeErase = FLASH_TYPEERASE_PAGES; // 擦除类型为页擦除 erase_init.PageAddress = ADDR_FLASH; erase_init.NbPages = 1; // 擦除的页数 uint32_t page_error = 0; HAL_FLASH_Unlock(); // 解锁Flash HAL_StatusTypeDef status = HAL_FLASHEx_Erase(&erase_init, &page_error); // 执行擦除操作 HAL_FLASH_Lock(); // 上锁Flash if(status == HAL_OK){ if(ADDR_FLASH == addr_FLASH_ADDR) { initial_address = 0; // 将initial_address清零 } else if(ADDR_FLASH == pbstatus_FLASH_ADDR) { gpiobStatus = 0; // 将pb_status清零 } else if(ADDR_FLASH == baudrate_FLASH_ADDR) { BaudrateValue = 0xFFFF; } else if(ADDR_FLASH == ADC1_FLASH_ADDR) { Adc2_CalibrationValue = 0x0000; // 清零 } else if(ADDR_FLASH == ADC2_FLASH_ADDR) { Adc3_CalibrationValue = 0x0000; // 清零 } } } void Write_Information(uint32_t addr, uint8_t* rx_buffer, uint8_t buffer_index) { uint16_t newValue = 0; erase_flash(addr); HAL_FLASH_Unlock(); // 解锁Flash if (addr == addr_FLASH_ADDR) { // 写入地址到Flash newValue = rx_buffer[buffer_index]; HAL_StatusTypeDef status = HAL_FLASH_Program(FLASH_TYPEPROGRAM_HALFWORD, addr_FLASH_ADDR, newValue); if (status == HAL_OK) { initial_address = newValue; // 将新地址赋值给initial_address } } else if (addr == pbstatus_FLASH_ADDR) { // 写入PB状态到Flash newValue = rx_buffer[buffer_index]; HAL_StatusTypeDef status = HAL_FLASH_Program(FLASH_TYPEPROGRAM_HALFWORD, pbstatus_FLASH_ADDR, newValue); if (status == HAL_OK) { gpiobStatus = newValue; // 将新状态赋值给gpiobStatus } } else if (addr == baudrate_FLASH_ADDR) { // 写入波特率到Flash newValue = rx_buffer[buffer_index]; HAL_StatusTypeDef status = HAL_FLASH_Program(FLASH_TYPEPROGRAM_HALFWORD, baudrate_FLASH_ADDR, newValue); if (status == HAL_OK) { BaudrateValue = newValue; // 将新状态赋值给BaudrateValue } } else if (addr == ADC1_FLASH_ADDR || addr == ADC2_FLASH_ADDR) { // 写入ADC校准值到Flash uint16_t Standard_value = (0.6 / (3.3 / 4096)); if (addr == ADC1_FLASH_ADDR) { if (adc2_rawValue >= Standard_value) { newValue = adc2_rawValue - Standard_value; } else { newValue = Standard_value - adc2_rawValue; newValue |= 0x8000; } HAL_StatusTypeDef status = HAL_FLASH_Program(FLASH_TYPEPROGRAM_HALFWORD, ADC1_FLASH_ADDR, newValue); if (status == HAL_OK) { Adc2_CalibrationValue = newValue & 0x7FFF; Value_old_addr2 = newValue; } } else if (addr == ADC2_FLASH_ADDR) { if (adc3_rawValue >= Standard_value) { newValue = adc3_rawValue - Standard_value; } else { newValue = Standard_value - adc3_rawValue; newValue |= 0x8000; } HAL_StatusTypeDef status = HAL_FLASH_Program(FLASH_TYPEPROGRAM_HALFWORD, ADC2_FLASH_ADDR, newValue); if (status == HAL_OK) { Adc3_CalibrationValue = newValue & 0x7FFF; Value_old_addr3 = newValue; } } } HAL_FLASH_Lock(); // 上锁Flash } void clear_buf(void){ memset(USART_MODBUS_RX, 0, sizeof(USART_MODBUS_RX)); memset(USART_PUB_RX, 0, RX_BUF_SIZE); USART_MODBUS_FLAG = 0; USART_IAP_FLAG = 0; } void re_receive(void){ HAL_UART_AbortReceive(&huart1); HAL_UART_Receive_DMA(&huart1, USART_PUB_RX, RX_BUF_SIZE); } void receive_modbus_7(uint16_t addr, uint8_t funcode, uint8_t byteNum, uint16_t byte, int byteSize){ uint8_t data_to_send[] = {(uint8_t)addr, funcode, byteNum, (uint8_t)(byte >> 8), (uint8_t)(byte & 0xFF), 0x00, 0x00}; uint16_t CRC_value = calculate_crc(data_to_send, (byteSize - 2)); data_to_send[(byteSize - 2)] = (uint8_t)(CRC_value & 0xFF); data_to_send[(byteSize - 1)] = (uint8_t)(CRC_value >> 8); HAL_UART_Transmit(&huart1, data_to_send, byteSize, byteSize); clear_buf(); re_receive(); } void receive_modbus_8(uint16_t addr, uint8_t funcode, uint16_t startaddr, uint16_t reg){ uint8_t data_to_send[] = {(uint8_t)addr, funcode, (uint8_t)(startaddr >> 8), (uint8_t)(startaddr & 0xFF), \ (uint8_t)(reg >> 8), (uint8_t)(reg & 0xFF), 0x00, 0x00}; uint16_t CRC_value = calculate_crc(data_to_send, 6); data_to_send[6] = (uint8_t)(CRC_value & 0xFF); data_to_send[7] = (uint8_t)(CRC_value >> 8); HAL_UART_Transmit(&huart1, data_to_send, 8, 7); clear_buf(); re_receive(); } void receive_modbus_9_1(uint16_t addr, uint8_t funcode, uint16_t startaddr, uint16_t reg, uint8_t byteNum){ uint8_t data_to_send[] = {(uint8_t)addr, funcode, (uint8_t)(startaddr >> 8), (uint8_t)(startaddr & 0xFF), \ (uint8_t)(reg >> 8), (uint8_t)(reg & 0xFF), byteNum, 0x00, 0x00}; uint16_t CRC_value = calculate_crc(data_to_send, 7); data_to_send[7] = (uint8_t)(CRC_value & 0xFF); data_to_send[8] = (uint8_t)(CRC_value >> 8); HAL_UART_Transmit(&huart1, data_to_send, 9, 9); clear_buf(); re_receive(); } void receive_modbus_9(uint16_t addr, uint8_t funcode, uint8_t byteNum, uint16_t byte1, uint16_t byte2, int byteSize){ uint8_t data_to_send[] = {(uint8_t)addr, funcode, byteNum, (uint8_t)(byte1 >> 8), (uint8_t)(byte1 & 0xFF), (uint8_t)(byte2 >> 8), \ (uint8_t)(byte2 & 0xFF), 0x00, 0x00}; uint16_t CRC_value = calculate_crc(data_to_send, (byteSize - 2)); data_to_send[(byteSize - 2)] = (uint8_t)(CRC_value & 0xFF); data_to_send[(byteSize - 1)] = (uint8_t)(CRC_value >> 8); HAL_UART_Transmit(&huart1, data_to_send, byteSize, (byteSize - 1)); clear_buf(); re_receive(); } void receive_modbus_11(uint16_t addr, uint8_t funcode, uint8_t byteNum, uint16_t byte1, uint16_t byte2, uint16_t byte3, int byteSize){ uint8_t data_to_send[] = {(uint8_t)addr, funcode, byteNum, (uint8_t)(byte1 >> 8), (uint8_t)(byte1 & 0xFF), (uint8_t)(byte2 >> 8), \ (uint8_t)(byte2 & 0xFF), (uint8_t)(byte3 >> 8), (uint8_t)(byte3 & 0xFF), 0x00, 0x00}; uint16_t CRC_value = calculate_crc(data_to_send, (byteSize - 2)); data_to_send[(byteSize - 2)] = (uint8_t)(CRC_value & 0xFF); data_to_send[(byteSize - 1)] = (uint8_t)(CRC_value >> 8); HAL_UART_Transmit(&huart1, data_to_send, byteSize, (byteSize - 1)); clear_buf(); re_receive(); } void receive_modbus_13(uint16_t addr, uint8_t funcode, uint8_t byteNum, uint16_t byte1, uint16_t byte2, uint16_t byte3, uint16_t byte4, int byteSize){ uint8_t data_to_send[] = {(uint8_t)addr, funcode, byteNum, (uint8_t)(byte1 >> 8), (uint8_t)(byte1 & 0xFF), (uint8_t)(byte2 >> 8), \ (uint8_t)(byte2 & 0xFF), (uint8_t)(byte3 >> 8), (uint8_t)(byte3 & 0xFF), (uint8_t)(byte4 >> 8), (uint8_t)(byte4 & 0xFF), 0x00, 0x00}; uint16_t CRC_value = calculate_crc(data_to_send, (byteSize - 2)); data_to_send[(byteSize - 2)] = (uint8_t)(CRC_value & 0xFF); data_to_send[(byteSize - 1)] = (uint8_t)(CRC_value >> 8); HAL_UART_Transmit(&huart1, data_to_send, byteSize, (byteSize - 1)); clear_buf(); re_receive(); } void receive_modbus_15(uint16_t addr, uint8_t funcode, uint8_t byteNum, uint16_t byte1, uint16_t byte2, uint16_t byte3, uint16_t byte4, uint16_t byte5, int byteSize){ uint8_t data_to_send[] = {(uint8_t)addr, funcode, byteNum, (uint8_t)(byte1 >> 8), (uint8_t)(byte1 & 0xFF), (uint8_t)(byte2 >> 8), \ (uint8_t)(byte2 & 0xFF), (uint8_t)(byte3 >> 8), (uint8_t)(byte3 & 0xFF), (uint8_t)(byte4 >> 8), (uint8_t)(byte4 & 0xFF), (uint8_t)(byte5 >> 8),\ (uint8_t)(byte5 & 0xFF), 0x00, 0x00}; uint16_t CRC_value = calculate_crc(data_to_send, (byteSize - 2)); data_to_send[(byteSize - 2)] = (uint8_t)(CRC_value & 0xFF); data_to_send[(byteSize - 1)] = (uint8_t)(CRC_value >> 8); HAL_UART_Transmit(&huart1, data_to_send, byteSize, (byteSize - 1)); clear_buf(); re_receive(); } void ModBus(void) { if (USART_MODBUS_FLAG == 1 && (calculate_crc(USART_MODBUS_RX,6) == (USART_MODBUS_RX[7] << 8 | USART_MODBUS_RX[6])) && USART_PUB_LENGTH < 10) { if(USART_MODBUS_RX[0] == (uint8_t)initial_address && USART_MODBUS_RX[1] == 0x03 && USART_MODBUS_RX[2] == 0x00 \ && USART_MODBUS_RX[3] == 0x01 && USART_MODBUS_RX[4] == 0x00 && USART_MODBUS_RX[5] == 0x01){ receive_modbus_7(initial_address, 0x03, 0x02, gpioaStatus, 7); } else if(USART_MODBUS_RX[0] == (uint8_t)initial_address && USART_MODBUS_RX[1] == 0x03 && USART_MODBUS_RX[2] == 0x00 \ && USART_MODBUS_RX[3] == 0x02 && USART_MODBUS_RX[4] == 0x00 && USART_MODBUS_RX[5] == 0x01){ receive_modbus_7(initial_address, 0x03, 0x02, gpiobStatus, 7); } else if(USART_MODBUS_RX[0] == (uint8_t)initial_address && USART_MODBUS_RX[1] == 0x03 && USART_MODBUS_RX[2] == 0x00 \ && USART_MODBUS_RX[3] == 0x03 && USART_MODBUS_RX[4] == 0x00 && USART_MODBUS_RX[5] == 0x01){ receive_modbus_7(initial_address, 0x03, 0x02, adc2_filtered, 7); } else if(USART_MODBUS_RX[0] == (uint8_t)initial_address && USART_MODBUS_RX[1] == 0x03 && USART_MODBUS_RX[2] == 0x00 \ && USART_MODBUS_RX[3] == 0x04 && USART_MODBUS_RX[4] == 0x00 && USART_MODBUS_RX[5] == 0x01){ receive_modbus_7(initial_address, 0x03, 0x02, adc3_filtered, 7); } else if(USART_MODBUS_RX[0] == (uint8_t)initial_address && USART_MODBUS_RX[1] == 0x03 && USART_MODBUS_RX[2] == 0x00 \ && USART_MODBUS_RX[3] == 0x05 && USART_MODBUS_RX[4] == 0x00 && USART_MODBUS_RX[5] == 0x01){ receive_modbus_7(initial_address, 0x03, 0x02, adc1_filtered, 7); } else if(USART_MODBUS_RX[0] == (uint8_t)initial_address && USART_MODBUS_RX[1] == 0x03 && USART_MODBUS_RX[2] == 0x00 \ && USART_MODBUS_RX[3] == 0x01 && USART_MODBUS_RX[4] == 0x00 && USART_MODBUS_RX[5] == 0x02){ receive_modbus_9(initial_address, 0x03, 0x04, gpioaStatus, gpiobStatus, 9); } else if(USART_MODBUS_RX[0] == (uint8_t)initial_address && USART_MODBUS_RX[1] == 0x03 && USART_MODBUS_RX[2] == 0x00 \ && USART_MODBUS_RX[3] == 0x01 && USART_MODBUS_RX[4] == 0x00 && USART_MODBUS_RX[5] == 0x03){ receive_modbus_11(initial_address, 0x03, 0x06, gpioaStatus, gpiobStatus, adc2_filtered, 11); } else if(USART_MODBUS_RX[0] == (uint8_t)initial_address && USART_MODBUS_RX[1] == 0x03 && USART_MODBUS_RX[2] == 0x00 \ && USART_MODBUS_RX[3] == 0x01 && USART_MODBUS_RX[4] == 0x00 && USART_MODBUS_RX[5] == 0x04){ receive_modbus_13(initial_address, 0x03, 0x08, gpioaStatus, gpiobStatus, adc2_filtered, adc3_filtered, 13); } else if(USART_MODBUS_RX[0] == (uint8_t)initial_address && USART_MODBUS_RX[1] == 0x03 && USART_MODBUS_RX[2] == 0x00 \ && USART_MODBUS_RX[3] == 0x01 && USART_MODBUS_RX[4] == 0x00 && USART_MODBUS_RX[5] == 0x05){ receive_modbus_15(initial_address, 0x03, 0x0A, gpioaStatus, gpiobStatus, adc2_filtered, adc3_filtered, adc1_filtered, 15); } else if(USART_MODBUS_RX[0] == (uint8_t)initial_address && USART_MODBUS_RX[1] == 0x03 && USART_MODBUS_RX[2] == 0x00 \ && USART_MODBUS_RX[3] == 0x02 && USART_MODBUS_RX[4] == 0x00 && USART_MODBUS_RX[5] == 0x02){ receive_modbus_9(initial_address, 0x03, 0x04, gpiobStatus, adc2_filtered, 9); } else if(USART_MODBUS_RX[0] == (uint8_t)initial_address && USART_MODBUS_RX[1] == 0x03 && USART_MODBUS_RX[2] == 0x00 \ && USART_MODBUS_RX[3] == 0x02 && USART_MODBUS_RX[4] == 0x00 && USART_MODBUS_RX[5] == 0x03){ receive_modbus_11(initial_address, 0x03, 0x06, gpiobStatus, adc2_filtered, adc3_filtered, 11); } else if(USART_MODBUS_RX[0] == (uint8_t)initial_address && USART_MODBUS_RX[1] == 0x03 && USART_MODBUS_RX[2] == 0x00 \ && USART_MODBUS_RX[3] == 0x02 && USART_MODBUS_RX[4] == 0x00 && USART_MODBUS_RX[5] == 0x04){ receive_modbus_13(initial_address, 0x03, 0x08, gpiobStatus, adc2_filtered, adc3_filtered, adc1_filtered, 13); } else if(USART_MODBUS_RX[0] == (uint8_t)initial_address && USART_MODBUS_RX[1] == 0x03 && USART_MODBUS_RX[2] == 0x00 \ && USART_MODBUS_RX[3] == 0x03 && USART_MODBUS_RX[4] == 0x00 && USART_MODBUS_RX[5] == 0x02){ receive_modbus_9(initial_address, 0x03, 0x04, adc2_filtered, adc3_filtered, 9); } else if(USART_MODBUS_RX[0] == (uint8_t)initial_address && USART_MODBUS_RX[1] == 0x03 && USART_MODBUS_RX[2] == 0x00 \ && USART_MODBUS_RX[3] == 0x03 && USART_MODBUS_RX[4] == 0x00 && USART_MODBUS_RX[5] == 0x03){ receive_modbus_11(initial_address, 0x03, 0x06, adc2_filtered, adc3_filtered, adc1_filtered, 11); } else if(USART_MODBUS_RX[0] == (uint8_t)initial_address && USART_MODBUS_RX[1] == 0x03 && USART_MODBUS_RX[2] == 0x00 \ && USART_MODBUS_RX[3] == 0x04 && USART_MODBUS_RX[4] == 0x00 && USART_MODBUS_RX[5] == 0x02){ receive_modbus_9(initial_address, 0x03, 0x04, adc3_filtered, adc1_filtered, 9); } else if(USART_MODBUS_RX[0] == 0xFA && USART_MODBUS_RX[1] == 0x03 && USART_MODBUS_RX[2] == 0x00 && USART_MODBUS_RX[3] == 0xAA \ && USART_MODBUS_RX[4] == 0x00 && USART_MODBUS_RX[5] == 0x01){ receive_modbus_7(0xFA, 0x03, 0x02, initial_address, 7); } else if(USART_MODBUS_RX[0] == (uint8_t)initial_address && USART_MODBUS_RX[1] == 0x03 && USART_MODBUS_RX[2] == 0x50 \ && USART_MODBUS_RX[3] == 0x00 && USART_MODBUS_RX[4] == 0x00 && USART_MODBUS_RX[5] == 0x02){ receive_modbus_9(initial_address, 0x03, 0x04, ((System_version >> 16) & 0xFFFF), (System_version & 0xFFFF), 9); // __set_FAULTMASK(0); //先关闭全局中断 // iap_load_app(0x08020000); } else if(USART_MODBUS_RX[0] == (uint8_t)initial_address && USART_MODBUS_RX[1] == 0x06 && USART_MODBUS_RX[2] == 0x00 \ && USART_MODBUS_RX[3] == 0x02 && USART_MODBUS_RX[4] == 0x00){ updatePbStatus(USART_MODBUS_RX[5]); Write_Information(pbstatus_FLASH_ADDR, USART_MODBUS_RX, 5); receive_modbus_8(initial_address, USART_MODBUS_RX[1], ((uint16_t)USART_MODBUS_RX[2] << 8) | USART_MODBUS_RX[3], \ ((uint16_t)USART_MODBUS_RX[4] << 8) | USART_MODBUS_RX[5]); } else if(USART_MODBUS_RX[0] == (uint8_t)initial_address && USART_MODBUS_RX[1] == 0x06 && USART_MODBUS_RX[2] == 0x00 \ && USART_MODBUS_RX[3] == 0x0A && USART_MODBUS_RX[4] == 0x00 && USART_MODBUS_RX[5] == 0x01){ Write_Information(ADC1_FLASH_ADDR, USART_MODBUS_RX, 0); receive_modbus_8(initial_address, USART_MODBUS_RX[1], ((uint16_t)USART_MODBUS_RX[2] << 8) | USART_MODBUS_RX[3], \ ((uint16_t)USART_MODBUS_RX[4] << 8) | USART_MODBUS_RX[5]); } else if(USART_MODBUS_RX[0] == (uint8_t)initial_address && USART_MODBUS_RX[1] == 0x06 && USART_MODBUS_RX[2] == 0x00 \ && USART_MODBUS_RX[3] == 0x0B && USART_MODBUS_RX[4] == 0x00 && USART_MODBUS_RX[5] == 0x01){ Write_Information(ADC2_FLASH_ADDR, USART_MODBUS_RX, 0); receive_modbus_8(initial_address, USART_MODBUS_RX[1], ((uint16_t)USART_MODBUS_RX[2] << 8) | USART_MODBUS_RX[3], \ ((uint16_t)USART_MODBUS_RX[4] << 8) | USART_MODBUS_RX[5]); } else if(USART_MODBUS_RX[0] == (uint8_t)initial_address && USART_MODBUS_RX[1] == 0x06 && USART_MODBUS_RX[2] == 0x00 \ && USART_MODBUS_RX[3] == 0x0C && USART_MODBUS_RX[4] == 0x00){ update_baudrate(USART_MODBUS_RX[5]); Write_Information(baudrate_FLASH_ADDR, USART_MODBUS_RX, 5); receive_modbus_8(initial_address, USART_MODBUS_RX[1], ((uint16_t)USART_MODBUS_RX[2] << 8) | USART_MODBUS_RX[3], \ ((uint16_t)USART_MODBUS_RX[4] << 8) | USART_MODBUS_RX[5]); } else if(USART_MODBUS_RX[0] == (uint8_t)initial_address && USART_MODBUS_RX[1] == 0x06 && USART_MODBUS_RX[2] == 0x00 \ && USART_MODBUS_RX[3] == 0xAA && USART_MODBUS_RX[4] == 0x00){ Write_Information(addr_FLASH_ADDR, USART_MODBUS_RX, 5); receive_modbus_8(initial_address, USART_MODBUS_RX[1], ((uint16_t)USART_MODBUS_RX[2] << 8) | USART_MODBUS_RX[3], \ ((uint16_t)USART_MODBUS_RX[4] << 8) | USART_MODBUS_RX[5]); } else if(USART_MODBUS_RX[0] == (uint8_t)initial_address && USART_MODBUS_RX[1] == 0x06 && USART_MODBUS_RX[2] == 0x00 \ && USART_MODBUS_RX[3] == 0xCC && USART_MODBUS_RX[4] == 0xA5 && USART_MODBUS_RX[5] == 0x5A){ clear_buf(); HAL_NVIC_SystemReset(); } else { clear_buf(); re_receive(); } } } /* USER CODE END 4 */ /** * @brief Period elapsed callback in non blocking mode * @note This function is called when TIM3 interrupt took place, inside * HAL_TIM_IRQHandler(). It makes a direct call to HAL_IncTick() to increment * a global variable "uwTick" used as application time base. * @param htim : TIM handle * @retval None */ void HAL_TIM_PeriodElapsedCallback(TIM_HandleTypeDef *htim) { /* USER CODE BEGIN Callback 0 */ /* USER CODE END Callback 0 */ if (htim->Instance == TIM3) { HAL_IncTick(); } /* USER CODE BEGIN Callback 1 */ /* USER CODE END Callback 1 */ } /** * @brief This function is executed in case of error occurrence. * @retval None */ void Error_Handler(void) { /* USER CODE BEGIN Error_Handler_Debug */ /* User can add his own implementation to report the HAL error return state */ __disable_irq(); while (1) { } /* USER CODE END Error_Handler_Debug */ } #ifdef USE_FULL_ASSERT /** * @brief Reports the name of the source file and the source line number * where the assert_param error has occurred. * @param file: pointer to the source file name * @param line: assert_param error line source number * @retval None */ void assert_failed(uint8_t *file, uint32_t line) { /* USER CODE BEGIN 6 */ /* User can add his own implementation to report the file name and line number, ex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */ /* USER CODE END 6 */ } #endif /* USE_FULL_ASSERT */