/* * author: xxJian * date: 2018-9-3 * ported from https://github.com/msparks/arduino-ds1302 * */ #include "DS1302Drv.h" uint8_t time_buf_reg[8] = {0x20,0x10,0x09,0x14,0x23,0x59,0x50,0x02};//3?ê?ê±?? uint32_t b_date=12, b_month=6, b_year=2021, b_hour=23, b_minute=59, b_second=50, b_day=2; // Returns the decoded decimal value from a binary-coded decimal (BCD) byte. // Assumes 'bcd' is coded with 4-bits per digit, with the tens place digit in // the upper 4 MSBs. uint8_t bcdToDec(const uint8_t bcd) { return (10 * ((bcd & 0xF0) >> 4) + (bcd & 0x0F)); } // Returns the binary-coded decimal of 'dec'. Inverse of bcdToDec. uint8_t decToBcd(const uint8_t dec) { uint8_t tens, ones; tens = dec / 10; ones = dec % 10; return (tens << 4) | ones; } // Returns the hour in 24-hour format from the hour register value. uint8_t hourFromRegisterValue(const uint8_t value) { uint8_t adj; if (value & 128) // 12-hour mode adj = 12 * ((value & 32) >> 5); else // 24-hour mode adj = 10 * ((value & (32 + 16)) >> 4); return (value & 15) + adj; } void DS1302_writeOut(const uint8_t value, uint8_t readAfter) { GPIO_InitTypeDef GPIO_InitStruct; uint32_t i,j; //pinMode(io_pin_, OUTPUT); GPIO_InitStruct.Pin = DS1302_IO_Pin; GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP; GPIO_InitStruct.Pull = GPIO_NOPULL; GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW; HAL_GPIO_Init(DS1302_IO_GPIO_Port, &GPIO_InitStruct); for (i = 0; i < 8; i++) { //digitalWrite(io_pin_, (value >> i) & 1); if( (value >> i) & 1 ) { HAL_GPIO_WritePin(DS1302_IO_GPIO_Port, DS1302_IO_Pin, GPIO_PIN_SET); } else { HAL_GPIO_WritePin(DS1302_IO_GPIO_Port, DS1302_IO_Pin, GPIO_PIN_RESET); } //HAL_Delay(1); HAL_GPIO_WritePin(DS1302_SCLK_GPIO_Port, DS1302_SCLK_Pin, GPIO_PIN_RESET); //digitalWrite(sclk_pin_, HIGH); //HAL_Delay(2); j=2000; while(j>1) { j--; __nop(); } if (readAfter && i == 7) { // We're about to read data -- ensure the pin is back in input mode // before the clock is lowered. //pinMode(io_pin_, INPUT); HAL_GPIO_WritePin(DS1302_SCLK_GPIO_Port, DS1302_SCLK_Pin, GPIO_PIN_SET); //HAL_Delay(1); j=2000; while(j>1) { j--; __nop(); } HAL_GPIO_WritePin(DS1302_IO_GPIO_Port, DS1302_IO_Pin, GPIO_PIN_RESET); GPIO_InitStruct.Pin = DS1302_IO_Pin; GPIO_InitStruct.Mode = GPIO_MODE_INPUT; GPIO_InitStruct.Pull = GPIO_NOPULL; HAL_GPIO_Init(DS1302_IO_GPIO_Port, &GPIO_InitStruct); //HAL_Delay(1); } else { HAL_GPIO_WritePin(DS1302_SCLK_GPIO_Port, DS1302_SCLK_Pin, GPIO_PIN_SET); //digitalWrite(sclk_pin_, LOW); //HAL_Delay(2); //delayMicroseconds(1); j=2000; while(j>1) { j--; __nop(); } } } } uint8_t DS1302_readIn(void) { uint8_t input_value; uint8_t bit; uint32_t i,j; input_value = 0; bit = 0; GPIO_InitTypeDef GPIO_InitStruct; HAL_GPIO_WritePin(DS1302_IO_GPIO_Port, DS1302_IO_Pin, GPIO_PIN_RESET); //pinMode(io_pin_, INPUT); GPIO_InitStruct.Pin = DS1302_IO_Pin; GPIO_InitStruct.Mode = GPIO_MODE_INPUT; GPIO_InitStruct.Pull = GPIO_NOPULL; HAL_GPIO_Init(DS1302_IO_GPIO_Port, &GPIO_InitStruct); // Bits from the DS1302 are output on the falling edge of the clock // cycle. This is called after readIn (which will leave the clock low) or // writeOut(..., true) (which will leave it high). for (i = 0; i < 8; i++) { HAL_GPIO_WritePin(DS1302_SCLK_GPIO_Port, DS1302_SCLK_Pin, GPIO_PIN_SET); //digitalWrite(sclk_pin_, HIGH); //HAL_Delay(2); //delayMicroseconds(1); while(j>1) { j--; __nop(); } HAL_GPIO_WritePin(DS1302_SCLK_GPIO_Port, DS1302_SCLK_Pin, GPIO_PIN_RESET); //digitalWrite(sclk_pin_, LOW); //HAL_Delay(1); //delayMicroseconds(1); j=2000; while(j>1) { j--; __nop(); } bit = HAL_GPIO_ReadPin(DS1302_IO_GPIO_Port, DS1302_IO_Pin); //bit = digitalRead(io_pin_); //HAL_Delay(1); j=2000; while(j>1) { j--; __nop(); } input_value |= (bit << i); // Bits are read LSB first. } return input_value; } uint8_t DS1302_readRegister(const uint8_t reg) { //const SPISession s(ce_pin_, io_pin_, sclk_pin_); uint8_t cmd_byte; uint8_t result; uint32_t j; HAL_GPIO_WritePin(DS1302_CE_GPIO_Port, DS1302_CE_Pin, GPIO_PIN_SET); cmd_byte = (0x81 | (reg << 1)); DS1302_writeOut(cmd_byte, DEF_true); result = DS1302_readIn(); //HAL_Delay(1); j=2000; while(j>1) { j--; __nop(); } HAL_GPIO_WritePin(DS1302_CE_GPIO_Port, DS1302_CE_Pin, GPIO_PIN_RESET); return result; } void DS1302_writeRegister(const uint8_t reg, const uint8_t value) { //const SPISession s(ce_pin_, io_pin_, sclk_pin_); uint8_t cmd_byte; HAL_GPIO_WritePin(DS1302_CE_GPIO_Port, DS1302_CE_Pin, GPIO_PIN_SET); cmd_byte = (0x80 | (reg << 1)); DS1302_writeOut(cmd_byte, DEF_false); DS1302_writeOut(value, DEF_false); HAL_GPIO_WritePin(DS1302_SCLK_GPIO_Port, DS1302_SCLK_Pin, GPIO_PIN_RESET); HAL_GPIO_WritePin(DS1302_CE_GPIO_Port, DS1302_CE_Pin, GPIO_PIN_RESET); } void DS1302_writeProtect(const uint8_t enable) { HAL_GPIO_WritePin(DS1302_CE_GPIO_Port, DS1302_CE_Pin, GPIO_PIN_SET); DS1302_writeRegister(kWriteProtectReg, (enable << 7)); HAL_GPIO_WritePin(DS1302_CE_GPIO_Port, DS1302_CE_Pin, GPIO_PIN_RESET); } void DS1302_halt(const uint8_t enable) { uint8_t sec; HAL_GPIO_WritePin(DS1302_CE_GPIO_Port, DS1302_CE_Pin, GPIO_PIN_SET); sec = DS1302_readRegister(kSecondReg); sec &= ~(1 << 7); sec |= (enable << 7); DS1302_writeRegister(kSecondReg, sec); HAL_GPIO_WritePin(DS1302_CE_GPIO_Port, DS1302_CE_Pin, GPIO_PIN_RESET); } void DS1302_writeRam(const uint8_t address, const uint8_t value) { if (address >= kRamSize) { return; } DS1302_writeRegister(kRamAddress0 + address, value); } uint8_t DS1302_readRam(const uint8_t address) { if (address >= kRamSize) { return 0; } return DS1302_readRegister(kRamAddress0 + address); } void DS1302_writeRamBulk(const uint8_t* const data, int len) { if (len <= 0) { return; } if (len > kRamSize) { len = kRamSize; } //const SPISession s(ce_pin_, io_pin_, sclk_pin_); DS1302_writeOut(kRamBurstWrite, DEF_false); for (int i = 0; i < len; ++i) { DS1302_writeOut(data[i], DEF_false); } } void DS1302_readRamBulk(uint8_t* const data, int len) { if (len <= 0) { return; } if (len > kRamSize) { len = kRamSize; } //const SPISession s(ce_pin_, io_pin_, sclk_pin_); DS1302_writeOut(kRamBurstRead, DEF_true); for (int i = 0; i < len; ++i) { data[i] = DS1302_readIn(); } } void DS1302_timeRead() { //const SPISession s(ce_pin_, io_pin_, sclk_pin_); HAL_GPIO_WritePin(DS1302_CE_GPIO_Port, DS1302_CE_Pin, GPIO_PIN_SET); //Time t(2099, 1, 1, 0, 0, 0, Time::kSunday); //DS1302_writeOut(kClockBurstRead, DEF_true); time_buf_reg[7] = DS1302_readRegister(kSecondReg)& 0x7F; //sec time_buf_reg[6] = DS1302_readRegister(kMinuteReg); //min time_buf_reg[5] = DS1302_readRegister(kHourReg); //hr time_buf_reg[4] = DS1302_readRegister(kDateReg); //date time_buf_reg[3] = DS1302_readRegister(kMonthReg); //mon time_buf_reg[2] = DS1302_readRegister(kDayReg); //day time_buf_reg[1] = DS1302_readRegister(kYearReg); //yr /* time_buf_reg[7] = DS1302_readIn() & 0x7F; //sec time_buf_reg[6] = DS1302_readIn(); //min time_buf_reg[5] = DS1302_readIn(); //hr time_buf_reg[4] = DS1302_readIn(); //date time_buf_reg[3] = DS1302_readIn(); //mon time_buf_reg[2] = DS1302_readIn(); //day time_buf_reg[1] = DS1302_readIn(); //yr */ b_year = 2000 + bcdToDec(time_buf_reg[1]); b_day = bcdToDec(time_buf_reg[2]); b_month = bcdToDec(time_buf_reg[3]); b_date = bcdToDec(time_buf_reg[4]); b_hour = hourFromRegisterValue(time_buf_reg[5]); b_minute = bcdToDec(time_buf_reg[6]); b_second = bcdToDec(time_buf_reg[7]); HAL_GPIO_WritePin(DS1302_SCLK_GPIO_Port, DS1302_SCLK_Pin, GPIO_PIN_RESET); HAL_GPIO_WritePin(DS1302_CE_GPIO_Port, DS1302_CE_Pin, GPIO_PIN_RESET); } void DS1302_timeWrite(void) { // We want to maintain the Clock Halt flag if it is set. uint8_t ch_value; HAL_GPIO_WritePin(DS1302_CE_GPIO_Port, DS1302_CE_Pin, GPIO_PIN_SET); ch_value = DS1302_readRegister(kSecondReg) & 0x80; //const SPISession s(ce_pin_, io_pin_, sclk_pin_); /* 2019年5月11日更新:有一段时间DS1302模块没有安装纽扣电池,重新使用本次代码发现有点问题。 经调试发现,DS1302_timeWrite() 函数内,有一行代码是专门判断Clock Halt(时间停止)标志位是否设置的。 估计是DS1302初安装纽扣电池上电时,这个时钟是停止计算的。 因此,上纽扣电池的第一次执行,需要使用这行: DS1302_writeRegister(kSecondReg, decToBcd(b_second)); 随后,才可以使用这行: DS1302_writeRegister(kSecondReg,ch_value | decToBcd(b_second)); */ //DS1302_writeRegister(kSecondReg, decToBcd(b_second)); DS1302_writeRegister(kSecondReg,ch_value | decToBcd(b_second)); DS1302_writeRegister(kMinuteReg,decToBcd(b_minute)); DS1302_writeRegister(kHourReg,decToBcd(b_hour)); DS1302_writeRegister(kDateReg,decToBcd(b_date)); DS1302_writeRegister(kMonthReg,decToBcd(b_month)); DS1302_writeRegister(kDayReg ,decToBcd(b_day)); DS1302_writeRegister(kYearReg,decToBcd(b_year - 2000)); /* DS1302_writeOut(kClockBurstWrite, DEF_false); DS1302_writeOut(ch_value | decToBcd(b_second), DEF_false); DS1302_writeOut(decToBcd(b_minute), DEF_false); DS1302_writeOut(decToBcd(b_hour), DEF_false); DS1302_writeOut(decToBcd(b_date), DEF_false); DS1302_writeOut(decToBcd(b_month), DEF_false); DS1302_writeOut(decToBcd(b_day), DEF_false); DS1302_writeOut(decToBcd(b_year - 2000), DEF_false); // All clock registers *and* the WP register have to be written for the time // to be set. DS1302_writeOut(0, DEF_false); // Write protection register. DS1302_writeOut(0, DEF_false); // Trickle Charge register. */ HAL_GPIO_WritePin(DS1302_SCLK_GPIO_Port, DS1302_SCLK_Pin, GPIO_PIN_RESET); HAL_GPIO_WritePin(DS1302_CE_GPIO_Port, DS1302_CE_Pin, GPIO_PIN_RESET); }