/* USER CODE BEGIN Header */ /** ****************************************************************************** * @file : main.c * @brief : Main program body ****************************************************************************** * @attention * * Copyright (c) 2025 STMicroelectronics. * All rights reserved. * * This software is licensed under terms that can be found in the LICENSE file * in the root directory of this software component. * If no LICENSE file comes with this software, it is provided AS-IS. * ****************************************************************************** */ /* USER CODE END Header */ /* Includes ------------------------------------------------------------------*/ #include "main.h" #include "cmsis_os.h" #include "adc.h" #include "dma.h" #include "i2c.h" #include "tim.h" #include "usart.h" #include "gpio.h" /* Private includes ----------------------------------------------------------*/ /* USER CODE BEGIN Includes */ extern uint8_t dataReceive485[BUFFER_SIZE485]; // 485 extern uint16_t uartIRQ_rx_len ; // 485串口接收数据长度 /* USER CODE END Includes */ /* Private typedef -----------------------------------------------------------*/ /* USER CODE BEGIN PTD */ /* USER CODE END PTD */ /* Private define ------------------------------------------------------------*/ /* USER CODE BEGIN PD */ /* USER CODE END PD */ /* Private macro -------------------------------------------------------------*/ /* USER CODE BEGIN PM */ /* USER CODE END PM */ /* Private variables ---------------------------------------------------------*/ /* USER CODE BEGIN PV */ /* USER CODE END PV */ /* Private function prototypes -----------------------------------------------*/ void SystemClock_Config(void); void MX_FREERTOS_Init(void); /* USER CODE BEGIN PFP */ /* USER CODE END PFP */ /* Private user code ---------------------------------------------------------*/ /* USER CODE BEGIN 0 */ void uart_enable(void) { memset(dataReceive485, 0, sizeof(dataReceive485)); __HAL_UART_ENABLE_IT(&huart1, UART_IT_IDLE);//使能IDLE中断 HAL_UART_Receive_DMA(&huart1, dataReceive485, BUFFER_SIZE485); } void Restart_UART1_DMA(void) { HAL_UART_DMAStop(&huart1); // 停止 DMA __HAL_UART_DISABLE_IT(&huart1, UART_IT_IDLE); // 禁止 IDLE 中断 uartIRQ_rx_len = 0; // 清空接收缓冲区 memset(dataReceive485, 0, sizeof(dataReceive485)); // 重新启动 DMA 接收 HAL_UART_Receive_DMA(&huart1, dataReceive485, BUFFER_SIZE485); // 重新开启 IDLE 中断 __HAL_UART_ENABLE_IT(&huart1, UART_IT_IDLE); } /* USER CODE END 0 */ /** * @brief The application entry point. * @retval int */ int main(void) { /* USER CODE BEGIN 1 */ // SCB ->VTOR = FLASH_BASE | 0x6800; // __set_PRIMASK(0); /* USER CODE END 1 */ /* MCU Configuration--------------------------------------------------------*/ /* Reset of all peripherals, Initializes the Flash interface and the Systick. */ HAL_Init(); /* USER CODE BEGIN Init */ // SCB->VTOR = 0x08006800UL; /* 重定向中断向量表到 APP 起始地址 */ /* USER CODE END Init */ /* Configure the system clock */ SystemClock_Config(); /* USER CODE BEGIN SysInit */ // SCB ->VTOR = FLASH_BASE | 0x6800; // __set_PRIMASK(0); /* USER CODE END SysInit */ /* Initialize all configured peripherals */ MX_GPIO_Init(); MX_DMA_Init(); MX_ADC1_Init(); MX_TIM2_Init(); MX_USART1_UART_Init(); MX_USART2_UART_Init(); MX_I2C2_Init(); MX_TIM1_Init(); MX_TIM15_Init(); MX_TIM7_Init(); /* USER CODE BEGIN 2 */ /* USER CODE END 2 */ /* Init scheduler */ osKernelInitialize(); /* Call init function for freertos objects (in freertos.c) */ MX_FREERTOS_Init(); /* Start scheduler */ osKernelStart(); /* We should never get here as control is now taken by the scheduler */ /* Infinite loop */ /* USER CODE BEGIN WHILE */ while (1) { /* USER CODE END WHILE */ /* USER CODE BEGIN 3 */ } /* USER CODE END 3 */ } /** * @brief System Clock Configuration * @retval None */ void SystemClock_Config(void) { RCC_OscInitTypeDef RCC_OscInitStruct = {0}; RCC_ClkInitTypeDef RCC_ClkInitStruct = {0}; /** Configure the main internal regulator output voltage */ if (HAL_PWREx_ControlVoltageScaling(PWR_REGULATOR_VOLTAGE_SCALE1) != HAL_OK) { Error_Handler(); } /** Initializes the RCC Oscillators according to the specified parameters * in the RCC_OscInitTypeDef structure. */ RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSI; RCC_OscInitStruct.HSIState = RCC_HSI_ON; RCC_OscInitStruct.HSICalibrationValue = RCC_HSICALIBRATION_DEFAULT; RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON; RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSI; RCC_OscInitStruct.PLL.PLLM = 1; RCC_OscInitStruct.PLL.PLLN = 10; RCC_OscInitStruct.PLL.PLLP = RCC_PLLP_DIV7; RCC_OscInitStruct.PLL.PLLQ = RCC_PLLQ_DIV2; RCC_OscInitStruct.PLL.PLLR = RCC_PLLR_DIV2; if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK) { Error_Handler(); } /** Initializes the CPU, AHB and APB buses clocks */ RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_SYSCLK |RCC_CLOCKTYPE_PCLK1|RCC_CLOCKTYPE_PCLK2; RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK; RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1; RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV1; RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1; if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_4) != HAL_OK) { Error_Handler(); } } /* USER CODE BEGIN 4 */ /* // 定义变量 uint32_t capture_rising = 0; // 上升沿捕获值 uint32_t capture_falling = 0; // 下降沿捕获值 uint32_t pwm_period = 0; // PWM 周期 uint32_t pwm_pulse_width = 0; // PWM 高电平时间 float duty_cycle = 0.0f; // 占空比 float angle = 0.0f; // 计算出的角度值 // 获取捕获极性的宏 #define GET_CAPTURE_POLARITY(htim, channel) \ ((htim)->Instance->CCER & (TIM_CCER_CC1P << ((channel) - 1))) void HAL_TIM_IC_CaptureCallback(TIM_HandleTypeDef *htim) { if (htim->Instance == TIM1) { if (htim->Channel == HAL_TIM_ACTIVE_CHANNEL_1) { // 判断是上升沿还是下降沿触发 if (GET_CAPTURE_POLARITY(htim, TIM_CHANNEL_1) == 0) // 上升沿触发 { // 上升沿触发 capture_rising = HAL_TIM_ReadCapturedValue(htim, TIM_CHANNEL_1); __HAL_TIM_SET_CAPTUREPOLARITY(htim, TIM_CHANNEL_1, TIM_INPUTCHANNELPOLARITY_FALLING); // 设置为下降沿触发 } else // 下降沿触发 { // 下降沿触发 capture_falling = HAL_TIM_ReadCapturedValue(htim, TIM_CHANNEL_1); __HAL_TIM_SET_CAPTUREPOLARITY(htim, TIM_CHANNEL_1, TIM_INPUTCHANNELPOLARITY_RISING); // 设置为上升沿触发 // 计算 PWM 周期和占空比 if (capture_falling > capture_rising) { pwm_pulse_width = capture_falling - capture_rising; } else { pwm_pulse_width = (0xFFFF - capture_rising) + capture_falling; // 处理计数器溢出 } // 计算 PWM 周期 pwm_period = htim->Instance->ARR + 1; // 自动重装载值 + 1 // 计算占空比 duty_cycle = (float)pwm_pulse_width / (float)pwm_period * 100.0f; // 计算角度值(假设 PWM 占空比 0% 对应 0 度,100% 对应 360 度) angle = duty_cycle * 3.6f; // 1% 占空比对应 3.6 度 // 打印结果 printf("PWM Period: %lu, Pulse Width: %lu, Duty Cycle: %.2f%%, Angle: %.2f degrees\n", pwm_period, pwm_pulse_width, duty_cycle, angle); } } } } */ /* USER CODE END 4 */ /** * @brief Period elapsed callback in non blocking mode * @note This function is called when TIM6 interrupt took place, inside * HAL_TIM_IRQHandler(). It makes a direct call to HAL_IncTick() to increment * a global variable "uwTick" used as application time base. * @param htim : TIM handle * @retval None */ void HAL_TIM_PeriodElapsedCallback(TIM_HandleTypeDef *htim) { /* USER CODE BEGIN Callback 0 */ /* USER CODE END Callback 0 */ if (htim->Instance == TIM6) { HAL_IncTick(); } /* USER CODE BEGIN Callback 1 */ /* USER CODE END Callback 1 */ } /** * @brief This function is executed in case of error occurrence. * @retval None */ void Error_Handler(void) { /* USER CODE BEGIN Error_Handler_Debug */ /* User can add his own implementation to report the HAL error return state */ __disable_irq(); while (1) { } /* USER CODE END Error_Handler_Debug */ } #ifdef USE_FULL_ASSERT /** * @brief Reports the name of the source file and the source line number * where the assert_param error has occurred. * @param file: pointer to the source file name * @param line: assert_param error line source number * @retval None */ void assert_failed(uint8_t *file, uint32_t line) { /* USER CODE BEGIN 6 */ /* User can add his own implementation to report the file name and line number, ex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */ /* USER CODE END 6 */ } #endif /* USE_FULL_ASSERT */