/* USER CODE BEGIN Header */
/**
******************************************************************************
* @file : main.c
* @brief : Main program body
******************************************************************************
* @attention
*
*
© Copyright (c) 2021 STMicroelectronics.
* All rights reserved.
*
* This software component is licensed by ST under Ultimate Liberty license
* SLA0044, the "License"; You may not use this file except in compliance with
* the License. You may obtain a copy of the License at:
* www.st.com/SLA0044
*
******************************************************************************
*/
/* USER CODE END Header */
/* Includes ------------------------------------------------------------------*/
#include "main.h"
#include "cmsis_os.h"
#include "FreeRTOS.h"
#include "task.h"
#include "timers.h"
#include "event_groups.h"
/* Private includes ----------------------------------------------------------*/
/* USER CODE BEGIN Includes */
#include "string.h"
#include "stdio.h"
#include "usart.h"
#include "config.h"
#include "rkg.h"
#include "cang.h"
#include "kzq.h"
#include "level.h"
#include "tem.h"
#include "angle.h"
#include "xyf.h"
#include "hdf.h"
#include "bgy.h"
#include "yqhs.h"
#include "iap.h"
/* USER CODE END Includes */
#if 1
#define IR_ROM1 0x08000000
#else
#define IR_ROM1 0x08020000
#endif
/* Private typedef -----------------------------------------------------------*/
/* USER CODE BEGIN PTD */
#define ADDR_Is_In_ElecFence 0x05D0 // 1488 车是否在电子围栏内
uint8_t REST = 0;
uint32_t usage_Tsk12=0;
//============================================================
sT2C_RemoteCaliDat T2C_RemoteCaliDat001 =
{
0x3901,
0x9551000,
0x0003,
ADDR_Is_In_ElecFence,//0x0000,
0x0001, //操作的数据个数
0x55aa55aa, //保留字4字节
{1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,\
25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44},
0x7788,//保留字2字节
0x99aa //校验2字节
};
sT2C_RemoteCaliDat *pT2C_RemoteCaliData = &T2C_RemoteCaliDat001;
/* USER CODE END PTD */
/* Private define ------------------------------------------------------------*/
/* USER CODE BEGIN PD */
#define RT_ERRORCNT 60 //串口收发数据错误上限
/* USER CODE END PD */
/* Private macro -------------------------------------------------------------*/
/* USER CODE BEGIN PM */
uint8_t CMD_KZQ[256] =
{0x39,0x01,0x95,0x50,0x00,0x01,0x00,0x03,
0x00,0x00,0x00,0x00,0x95,0x05,0xaa,0xaa,
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
};
//卸油阀指令
uint8_t CMD_XYF[8] = {0x11,0x03,0x00,0x00,0x00,0x01,0x00,0x00};
uint8_t Data_Head[2] = {0x0D,0x0A};
//海底阀指令
uint8_t CMD_HDF[16] =
{0x21,0x03,0x2a,0,0,0,0,0,0xaa,0xbb,0xcc,0xdd,0xee,0xdd,0xcc,0xbb};
//人孔盖指令31 03 00 02 00 02
uint8_t CMD_RKG[8] = {0x31,0x03,0x00,0x02,0x00,0x02,0x00,0x00};
uint8_t CMD_RKG_CBM[12] = {0x0D,0x0A,0x31,0x03,0x00,0x02,0x00,0x02,0x00,0x00,0x0D,0x0A};
uint8_t CMD_RKG_XG[12] = {0x41,0x03,0x00,0x02,0x00,0x02,0x00,0x00};
//油气回收
uint8_t CMD_YQHS[8] = {0xE4,0x03,0x00,0x00,0x00,0x01,0x00,0x00};
//倾角传感器读取协议 01 03 00 02 00 02 CRC
uint8_t CMD_Angle_XY[] = {0x71,0x03,0x00,0x3d,0x00,0x03,0x00,0x00};
//卸尽传感器读取协议
uint8_t CMD_Biguayou[] = {0x81,0x03,0x00,0x00,0x00,0x01,0x9B,0xCA};
//uint8_t CMD_Angle_X[] = {0xE0,0x03,0x00,0x02,0x00,0x02,0x00,0x00};
//uint8_t CMD_Angle_Y[] = {0xE1,0x03,0x00,0x02,0x00,0x02,0x00,0x00};
uint8_t CMD_LDYW[8]={0x51,0x04,0x0a,0x0f,0x00,0x02};//设备地址,功能码,地址4字节 反回:设备地址,功能码,数据长度,数据4字节
uint8_t CMD_GetTempAndYewei[8]={0x51, 0x04, 00, 00, 00, 0x10, 0x03 ,0xae};//读取编号为04地址的温度传感器数据
//61-6f 03 00 04 00 01 C6 8A----读取华天传感器的第1个温度点,地址为x10;最接近电子仓的温度点
uint8_t CMD_GetTempHuaTian[8]={0x61, 0x03, 00, 04, 00, 01,0,0};//读取华天传感器的第一个温度点
//磁编码传感器读取协议 。
/* USER CODE END PM */
/* Private variables ---------------------------------------------------------*/
CRC_HandleTypeDef hcrc;
DAC_HandleTypeDef hdac;
DMA_HandleTypeDef hdma_dac_ch2;
TIM_HandleTypeDef htim1;
TIM_HandleTypeDef htim4;
UART_HandleTypeDef huart5;
UART_HandleTypeDef huart1;
UART_HandleTypeDef huart2;
UART_HandleTypeDef huart3;
DMA_HandleTypeDef hdma_usart1_rx;
DMA_HandleTypeDef hdma_usart1_tx;
DMA_HandleTypeDef hdma_usart2_rx;
DMA_HandleTypeDef hdma_usart3_rx;
uint8_t bufMain[128];
/* Definitions for defaultTask */
osThreadId_t defaultTaskHandle;
const osThreadAttr_t defaultTask_attributes = {
.name = "defaultTask",
.stack_size = 128 * 4,
.priority = (osPriority_t) osPriorityNormal,
};
/* Definitions for myTask02 */
osThreadId_t myTask02Handle;
const osThreadAttr_t myTask02_attributes = {
.name = "myTask02",
.stack_size = 256 * 4,
.priority = (osPriority_t) osPriorityLow,
};
/* Definitions for myTask03 */
osThreadId_t myTask03Handle;
const osThreadAttr_t myTask03_attributes = {
.name = "myTask03",
.stack_size = 256 * 4,
.priority = (osPriority_t) osPriorityLow,
};
/* Definitions for myTask04 */
osThreadId_t myTask04Handle;
const osThreadAttr_t myTask04_attributes = {
.name = "myTask04",
.stack_size = 256 * 4,
.priority = (osPriority_t) osPriorityLow,
};
/* Definitions for myTask05 */
osThreadId_t myTask05Handle;
const osThreadAttr_t myTask05_attributes = {
.name = "myTask05",
.stack_size = 128 * 4,
.priority = (osPriority_t) osPriorityLow,
};
/* Definitions for myTask06 */
osThreadId_t myTask06Handle;
const osThreadAttr_t myTask06_attributes = {
.name = "myTask06",
.stack_size = 128 * 4,
.priority = (osPriority_t) osPriorityLow,
};
/* Definitions for myTask07 */
osThreadId_t myTask07Handle;
const osThreadAttr_t myTask07_attributes = {
.name = "myTask07",
.stack_size = 128 * 4,
.priority = (osPriority_t) osPriorityLow,
};
/* Definitions for myTask08 */
osThreadId_t myTask08Handle;
const osThreadAttr_t myTask08_attributes = {
.name = "myTask08",
.stack_size = 128 * 4,
.priority = (osPriority_t) osPriorityLow,
};
/* Definitions for myTask09 */
osThreadId_t myTask09Handle;
const osThreadAttr_t myTask09_attributes = {
.name = "myTask09",
.stack_size = 128 * 4,
.priority = (osPriority_t) osPriorityLow,
};
/* Definitions for myTask10 */
osThreadId_t myTask10Handle;
const osThreadAttr_t myTask10_attributes = {
.name = "myTask10",
.stack_size = 128 * 4,
.priority = (osPriority_t) osPriorityLow,
};
/* Definitions for myTask11 */
osThreadId_t myTask11Handle;
const osThreadAttr_t myTask11_attributes = {
.name = "myTask11",
.stack_size = 128 * 4,
.priority = (osPriority_t) osPriorityLow,
};
/* Definitions for myTask12 */
osThreadId_t myTask12Handle;
const osThreadAttr_t myTask12_attributes = {
.name = "myTask12",
.stack_size = 128 * 4,
.priority = (osPriority_t) (osPriorityLow-6),
};
/* Definitions for myQueue01 */
osMessageQueueId_t myQueue01Handle;
const osMessageQueueAttr_t myQueue01_attributes = {
.name = "myQueue01"
};
/* Definitions for myQueue02 */
osMessageQueueId_t myQueue02Handle;
const osMessageQueueAttr_t myQueue02_attributes = {
.name = "myQueue02"
};
/* Definitions for myQueue03 */
osMessageQueueId_t myQueue03Handle;
const osMessageQueueAttr_t myQueue03_attributes = {
.name = "myQueue03"
};
/* Definitions for myQueue04 */
osMessageQueueId_t myQueue04Handle;
const osMessageQueueAttr_t myQueue04_attributes = {
.name = "myQueue04"
};
/* Definitions for myQueue05 */
osMessageQueueId_t myQueue05Handle;
const osMessageQueueAttr_t myQueue05_attributes = {
.name = "myQueue05"
};
/* Definitions for myQueue06 */
osMessageQueueId_t myQueue06Handle;
const osMessageQueueAttr_t myQueue06_attributes = {
.name = "myQueue06"
};
/* Definitions for myTimer01 */
osTimerId_t myTimer01Handle;
const osTimerAttr_t myTimer01_attributes = {
.name = "myTimer01"
};
/* Definitions for myTimer02 */
osTimerId_t myTimer02Handle;
const osTimerAttr_t myTimer02_attributes = {
.name = "myTimer02"
};
/* Definitions for myTimer03 */
osTimerId_t myTimer03Handle;
const osTimerAttr_t myTimer03_attributes = {
.name = "myTimer03"
};
/* Definitions for myTimer04 */
osTimerId_t myTimer04Handle;
const osTimerAttr_t myTimer04_attributes = {
.name = "myTimer04"
};
/* Definitions for myTimer05 */
osTimerId_t myTimer05Handle;
const osTimerAttr_t myTimer05_attributes = {
.name = "myTimer05"
};
/* Definitions for myTimer06 */
osTimerId_t myTimer06Handle;
const osTimerAttr_t myTimer06_attributes = {
.name = "myTimer06"
};
/* Definitions for myTimer07 */
osTimerId_t myTimer07Handle;
const osTimerAttr_t myTimer07_attributes = {
.name = "myTimer07"
};
/* Definitions for myTimer08 */
osTimerId_t myTimer08Handle;
const osTimerAttr_t myTimer08_attributes = {
.name = "myTimer08"
};
/* Definitions for myTimer09 */
osTimerId_t myTimer09Handle;
const osTimerAttr_t myTimer09_attributes = {
.name = "myTimer09"
};
/* Definitions for myTimer10 */
osTimerId_t myTimer10Handle;
const osTimerAttr_t myTimer10_attributes = {
.name = "myTimer10"
};
/* Definitions for myMutex01 */
osMutexId_t myMutex01Handle;
const osMutexAttr_t myMutex01_attributes = {
.name = "myMutex01"
};
/* Definitions for myMutex02 */
osMutexId_t myMutex02Handle;
const osMutexAttr_t myMutex02_attributes = {
.name = "myMutex02"
};
/* Definitions for myMutex03 */
osMutexId_t myMutex03Handle;
const osMutexAttr_t myMutex03_attributes = {
.name = "myMutex03"
};
/* Definitions for myMutex04 */
osMutexId_t myMutex04Handle;
const osMutexAttr_t myMutex04_attributes = {
.name = "myMutex04"
};
/* Definitions for myMutex05 */
osMutexId_t myMutex05Handle;
const osMutexAttr_t myMutex05_attributes = {
.name = "myMutex05"
};
/* Definitions for myMutex06 */
osMutexId_t myMutex06Handle;
const osMutexAttr_t myMutex06_attributes = {
.name = "myMutex06"
};
/* Definitions for myMutex07 */
osMutexId_t myMutex07Handle;
const osMutexAttr_t myMutex07_attributes = {
.name = "myMutex07"
};
/* Definitions for myMutex08 */
osMutexId_t myMutex08Handle;
const osMutexAttr_t myMutex08_attributes = {
.name = "myMutex08"
};
/* Definitions for myRecursiveMutex01 */
osMutexId_t myRecursiveMutex01Handle;
const osMutexAttr_t myRecursiveMutex01_attributes = {
.name = "myRecursiveMutex01",
.attr_bits = osMutexRecursive,
};
/* Definitions for myRecursiveMutex02 */
osMutexId_t myRecursiveMutex02Handle;
const osMutexAttr_t myRecursiveMutex02_attributes = {
.name = "myRecursiveMutex02",
.attr_bits = osMutexRecursive,
};
/* Definitions for myRecursiveMutex03 */
osMutexId_t myRecursiveMutex03Handle;
const osMutexAttr_t myRecursiveMutex03_attributes = {
.name = "myRecursiveMutex03",
.attr_bits = osMutexRecursive,
};
/* Definitions for myRecursiveMutex04 */
osMutexId_t myRecursiveMutex04Handle;
const osMutexAttr_t myRecursiveMutex04_attributes = {
.name = "myRecursiveMutex04",
.attr_bits = osMutexRecursive,
};
/* Definitions for myBinarySem01 */
osSemaphoreId_t myBinarySem01Handle;
const osSemaphoreAttr_t myBinarySem01_attributes = {
.name = "myBinarySem01"
};
/* Definitions for myBinarySem02 */
osSemaphoreId_t myBinarySem02Handle;
const osSemaphoreAttr_t myBinarySem02_attributes = {
.name = "myBinarySem02"
};
/* Definitions for myBinarySem03 */
osSemaphoreId_t myBinarySem03Handle;
const osSemaphoreAttr_t myBinarySem03_attributes = {
.name = "myBinarySem03"
};
/* Definitions for myBinarySem04 */
osSemaphoreId_t myBinarySem04Handle;
const osSemaphoreAttr_t myBinarySem04_attributes = {
.name = "myBinarySem04"
};
/* Definitions for myBinarySem05 */
osSemaphoreId_t myBinarySem05Handle;
const osSemaphoreAttr_t myBinarySem05_attributes = {
.name = "myBinarySem05"
};
/* Definitions for myBinarySem06 */
osSemaphoreId_t myBinarySem06Handle;
const osSemaphoreAttr_t myBinarySem06_attributes = {
.name = "myBinarySem06"
};
/* Definitions for myBinarySem07 */
osSemaphoreId_t myBinarySem07Handle;
const osSemaphoreAttr_t myBinarySem07_attributes = {
.name = "myBinarySem07"
};
/* Definitions for myBinarySem08 */
osSemaphoreId_t myBinarySem08Handle;
const osSemaphoreAttr_t myBinarySem08_attributes = {
.name = "myBinarySem08"
};
/* Definitions for myCountingSem01 */
osSemaphoreId_t myCountingSem01Handle;
const osSemaphoreAttr_t myCountingSem01_attributes = {
.name = "myCountingSem01"
};
/* Definitions for myCountingSem02 */
osSemaphoreId_t myCountingSem02Handle;
const osSemaphoreAttr_t myCountingSem02_attributes = {
.name = "myCountingSem02"
};
/* Definitions for myCountingSem03 */
osSemaphoreId_t myCountingSem03Handle;
const osSemaphoreAttr_t myCountingSem03_attributes = {
.name = "myCountingSem03"
};
/* Definitions for myCountingSem04 */
osSemaphoreId_t myCountingSem04Handle;
const osSemaphoreAttr_t myCountingSem04_attributes = {
.name = "myCountingSem04"
};
/* Definitions for myEvent01 */
osEventFlagsId_t myEvent01Handle;
const osEventFlagsAttr_t myEvent01_attributes = {
.name = "myEvent01"
};
/* Definitions for myEvent02 */
osEventFlagsId_t myEvent02Handle;
const osEventFlagsAttr_t myEvent02_attributes = {
.name = "myEvent02"
};
/* Definitions for myEvent03 */
osEventFlagsId_t myEvent03Handle;
const osEventFlagsAttr_t myEvent03_attributes = {
.name = "myEvent03"
};
/* Definitions for myEvent04 */
osEventFlagsId_t myEvent04Handle;
const osEventFlagsAttr_t myEvent04_attributes = {
.name = "myEvent04"
};
/* Definitions for myEvent05 */
osEventFlagsId_t myEvent05Handle;
const osEventFlagsAttr_t myEvent05_attributes = {
.name = "myEvent05"
};
/* Definitions for myEvent06 */
osEventFlagsId_t myEvent06Handle;
const osEventFlagsAttr_t myEvent06_attributes = {
.name = "myEvent06"
};
/* Definitions for myEvent07 */
osEventFlagsId_t myEvent07Handle;
const osEventFlagsAttr_t myEvent07_attributes = {
.name = "myEvent07"
};
/* Definitions for myEvent08 */
osEventFlagsId_t myEvent08Handle;
const osEventFlagsAttr_t myEvent08_attributes = {
.name = "myEvent08"
};
/* USER CODE BEGIN PV */
/* USER CODE END PV */
/* Private function prototypes -----------------------------------------------*/
void SystemClock_Config(void);
static void MX_GPIO_Init(void);
static void MX_DMA_Init(void);
static void MX_USART1_UART_Init(void);
static void MX_UART5_Init(void);
static void MX_USART2_UART_Init(void);
static void MX_USART3_UART_Init(void);
static void MX_CRC_Init(void);
static void MX_DAC_Init(void);
static void MX_TIM1_Init(void);
static void MX_TIM4_Init(void);
void StartDefaultTask(void *argument);
void StartTask02(void *argument);
void StartTask03(void *argument);
void StartTask04(void *argument);
void StartTask05(void *argument);
void StartTask06(void *argument);
void StartTask07(void *argument);
void StartTask08(void *argument);
void StartTask09(void *argument);
void StartTask10(void *argument);
void StartTask11(void *argument);
void StartTask12(void *argument);
void Callback01(void *argument);
void Callback02(void *argument);
void Callback03(void *argument);
void Callback04(void *argument);
void Callback05(void *argument);
void Callback06(void *argument);
void Callback07(void *argument);
void Callback08(void *argument);
void Callback09(void *argument);
void Callback010(void *argument);
void Cang_Init(void);
static void MX_NVIC_Init(void);
// for debug,将信息输出到指定的uart总线上
static void DumpMsg(uint8_t *msg)
{
HAL_GPIO_WritePin(GPIOA,con03_uart2_kongzhiqi_Pin,GPIO_PIN_RESET);
delay_sys_us(80);
HAL_UART_Transmit_IT(&huart2,msg,strlen(msg));
while (huart2.gState == HAL_UART_STATE_BUSY_TX)
{
osDelay(1);
}
delay_sys_us(80);
HAL_GPIO_WritePin(GPIOA,con03_uart2_kongzhiqi_Pin,GPIO_PIN_SET);
}
#include
void printx(const char *log,...)
{
osMutexAcquire(myMutex01Handle, portMAX_DELAY);
va_list ap;
va_start(ap,log);
vsnprintf(bufMain,sizeof(bufMain),log,ap);
va_end(ap);
DumpMsg(bufMain);
osMutexRelease(myMutex01Handle);
}
/* USER CODE BEGIN PFP */
void Flash_ReadBytes(uint16_t* sorBuf,uint32_t FlashAddr,uint16_t len)
{
uint16_t* p = sorBuf;
uint8_t i = 0,j = 0;
uint32_t addr = FlashAddr;
while(len--)
{
i = *(uint32_t*)addr++;
j = *(uint32_t*)addr++;
*p++ = j<<8|i;
}
}
uint16_t Flashbuf[2048]__attribute__ ((at(0X20001000)));// {0};
//uint8_t UART_RX_BUF[1024] __attribute__ ((at(0X20001000)));
void Flash_WriteBytes(uint16_t* sorBuf,uint32_t FlashAddr,uint16_t len)
{
uint32_t Offset_ADDR = 0,Page_StartAddr = 0,i = 0;
Offset_ADDR = FlashAddr%0x800;
Page_StartAddr = FlashAddr - Offset_ADDR;
//设置PageError
uint32_t PageError = 0;
FLASH_EraseInitTypeDef f;
f.TypeErase = FLASH_TYPEERASE_PAGES;
__nop();
f.PageAddress =Page_StartAddr;
f.NbPages = 1;
Flash_ReadBytes(Flashbuf,Page_StartAddr,0x400);
for(i = 0;iCang_Num = 3; //默认三仓
}
else
pcang->Cang_Num = Flash_buff[0];
if(Flash_buff[1] == 0xffff)
{
i = 0;
while(i < pcang->Cang_Num)
{
pcang->RKG_Num[i] = 1; //默认每仓1人孔大盖
pcang->RKG_DG = 1; //默认有大盖
i++;
}
}
else
{
i = 0;
while(i Cang_Num)
{
pcang->RKG_Num[i] = Flash_buff[1]; //默认每仓1人孔盖
pcang->RKG_DG = Flash_buff[1];
i++;
}
}
if(Flash_buff[2] == 0xffff)
pcang->RKG_XG = 0; //默认无人孔小盖
else
pcang->RKG_XG = Flash_buff[2];
if(Flash_buff[3] == 0xffff)
{
i = 0;
while(i Cang_Num)
{
pcang->XYF_INSTALL = 1; // 默认有卸油阀SLM
pcang->XYF_Num[i] = 1; //默认每仓1卸油阀
i++;
}
}
else
{
i = 0;
while(i Cang_Num)
{
pcang->XYF_INSTALL = 1; // 默认有卸油阀SLM
pcang->XYF_Num[i] = Flash_buff[3]; i++;
}
}
if(Flash_buff[4] == 0xffff)
{
i = 0;
while(i Cang_Num)
{
pcang->HDF_INSTALL = 1;
pcang->HDF_Num[i] = 1; //默认每仓1海底阀
i++;
}
}
else
{
i = 0;
while(i Cang_Num)
{
pcang->HDF_INSTALL = 1;//slm
pcang->HDF_Num[i] = Flash_buff[4];
i++;
}
}
Flash_ReadBytes(Flash_buff,ADDR_RKGSENSOR_TYPE,1);
if(Flash_buff[0] == 0xffff)
pcang->RKG_Type = 1; //默认人孔盖角度传感器 1磁电编码传感器
else
pcang->RKG_Type = Flash_buff[0];
Flash_ReadBytes(Flash_buff,ADDR_XYFSENSOR_TYPE,1);
if(Flash_buff[0] == 0xffff)
pcang->XYF_Type = 0; //默认卸油阀霍尔二合一
else
pcang->XYF_Type = Flash_buff[0];
Flash_ReadBytes(Flash_buff,ADDR_HDFSENSOR_TYPE,1);
if(Flash_buff[0] == 0xffff)
pcang->HDF_Type = 1; //默认底阀监测器 1智能底阀
else
pcang->HDF_Type = Flash_buff[0];
Flash_ReadBytes(Flash_buff,ADDR_RKG_NUM,8); //检测是否对阀门种类及数量进行配置
for(i = 0;i < 8;i++)
{
if((Flash_buff[i] < 8))
pcang->RKG_Num[i] = Flash_buff[i];
else
pcang->RKG_Num[i] = 1; //默认每仓1人孔阀
}
Flash_ReadBytes(Flash_buff,ADDR_XYF_NUM,8);
for(i = 0;i < 8;i++)
{
if((Flash_buff[i] < 8))
pcang->XYF_Num[i] = Flash_buff[i];
else
pcang->XYF_Num[i] = 1; //默认每仓1卸油阀 slm
}
Flash_ReadBytes(Flash_buff,ADDR_HDF_NUM,8);
for(i = 0;i < 8;i++)
{
if((Flash_buff[i] < 8))
pcang->HDF_Num[i] = Flash_buff[i];
else
pcang->HDF_Num[i] = 1; //默认每仓1海底阀 slm
}
Flash_ReadBytes(Flash_buff,ADDR_YQHS_TYPE,1);
if(Flash_buff[0] == 0xffff)
pcang->YQHS = 0; //默认无油气回收 slm
else
pcang->YQHS = Flash_buff[0];
Flash_ReadBytes(Flash_buff,ADDR_LEVEL_TYPE,1);
if(Flash_buff[0] == 0xffff)
pcang->Level = 2; //默认磁致伸缩液位传感器 slm
else
pcang->Level = Flash_buff[0];
Flash_ReadBytes(Flash_buff,ADDR_SENSOR_BUS_MAX_RETRY,1);
if(Flash_buff[0] == 0xffff)
pcang->sensorBusMaxReTry = 3;
else
pcang->sensorBusMaxReTry = Flash_buff[0];
if(pcang->sensorBusMaxReTry > 1000) pcang->sensorBusMaxReTry = 1000; // 设置硬上限
Flash_ReadBytes(Flash_buff,CANG1_LEVEL_CAL,8);
if(Flash_buff[0] == 0xffff)
{
for(i=0;iCang_Num;++i)
{
plevel[i+1].Level_Cal_zero = 0;
}
}
else
{
for (i = 0; i < pcang->Cang_Num; ++i)
{
hex_to_float1.arr[3] = (uint8_t)(Flash_buff[0+2*i] >> 8);
hex_to_float1.arr[2] = (uint8_t)(Flash_buff[0+2*i] & 0xFF); // Flash_buff[3];
hex_to_float1.arr[1] = (uint8_t)(Flash_buff[1+2*i] >> 8);
hex_to_float1.arr[0] = (uint8_t)(Flash_buff[1+2*i] & 0xFF);
plevel[i + 1].Level_Cal_zero = hex_to_float1.Ldcal_zero_temp;
}
}
Flash_ReadBytes(Flash_buff,ADDR_TEM_TYPE,1);
if(Flash_buff[0] == 0xffff)
pcang->Temperture = 1; //默认无温度传感器
else
pcang->Temperture = Flash_buff[0];
Flash_ReadBytes(Flash_buff,ADDR_ANGLE_TYPE,1);
if(Flash_buff[0] == 0xffff)
pcang->Angle = 1; //默认无姿态传感器
else
pcang->Angle = Flash_buff[0];
Flash_ReadBytes(Flash_buff,ADDR_SDATEJUDGE_NUM,1);
if(Flash_buff[0] == 0xffff)
{
for (i = 0; i < 8; i++)
{
prkg[i].RKG_StateKeepNum = 5; //默认人孔盖角度传感器
pxyf[i].XYF_StateKeepNum = 5;
}
phdf->HDF_StateKeepNum = 5;
pangle->Angle_StateKeepNum = 5;
plevel->Level_StateKeepNum = 5;
ptem->TEM_StateKeepNum = 5;
}
else
{
for (i = 0; i < 8; i++)
{
prkg[i].RKG_StateKeepNum = Flash_buff[0];
pxyf[i].XYF_StateKeepNum = Flash_buff[0];
}
pxyf->XYF_StateKeepNum = Flash_buff[0];
phdf->HDF_StateKeepNum = Flash_buff[0];
__NOP();
pangle->Angle_StateKeepNum = Flash_buff[0];
plevel->Level_StateKeepNum = Flash_buff[0];
ptem->TEM_StateKeepNum = Flash_buff[0];
}
}
/* USER CODE END PFP */
/* Private user code ---------------------------------------------------------*/
/* USER CODE BEGIN 0 */
/* USER CODE END 0 */
/**4
* @brief The application entry point.
* @retval int
*/
int main(void)
{
/* USER CODE BEGIN 1 */
GPIO_InitTypeDef GPIO_InitStruct = {0};
int spr000;
/* USER CODE END 1 */
#if IR_ROM1 == 0x08000000
Start_BootLoader();
#else
SCB->VTOR = 0x08020000;
__set_PRIMASK(0);
#endif
/* MCU Configuration--------------------------------------------------------*/
/* Reset of all peripherals, Initializes the Flash interface and the Systick. */
HAL_Init();
/* USER CODE BEGIN Init */
Cang_Init(); //应用程序初始化函数
RKG_Init();
XYF_Init();
BGY_Init();
/* USER CODE END Init */
/* Configure the system clock */
SystemClock_Config();
/* USER CODE BEGIN SysInit */
/* USER CODE END SysInit */
/* Initialize all configured peripherals */
MX_GPIO_Init();
MX_DMA_Init();
MX_USART1_UART_Init();
MX_UART5_Init();
MX_USART2_UART_Init();
MX_USART3_UART_Init();
MX_CRC_Init();
MX_DAC_Init();
MX_TIM1_Init();
MX_TIM4_Init();
/* Initialize interrupts */
MX_NVIC_Init();
/* USER CODE BEGIN 2 */
HAL_GPIO_WritePin(GPIOB,Con01_uart1_rankonggai_Pin,GPIO_PIN_SET);//切换为接收模式
HAL_GPIO_WritePin(GPIOB,con02_uart3_xieyoufa_Pin,GPIO_PIN_SET);//切换为接收模式
HAL_GPIO_WritePin(con03_uart2_kongzhiqi_GPIO_Port,con03_uart2_kongzhiqi_Pin,GPIO_PIN_SET);//切换为接收模式
//看门狗重新根据宏定义初始化
GPIO_InitStruct.Pin = WDI_sp706_kanmemgou_Pin;
if(WatchDogOn)//打开看门狗sp706
//if(1)//打开看门狗sp706
{
//
GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
}
else
{
GPIO_InitStruct.Mode = GPIO_MODE_INPUT;
}
GPIO_InitStruct.Pull = GPIO_NOPULL;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
HAL_GPIO_Init(WDI_sp706_kanmemgou_GPIO_Port, &GPIO_InitStruct);
HAL_GPIO_WritePin(GPIOB,Con01_uart1_rankonggai_Pin,GPIO_PIN_RESET);//切换为发送模式CON=0;//
HAL_GPIO_WritePin(GPIOB,Con01_uart1_rankonggai_Pin,GPIO_PIN_RESET);//切换为接收模式
HAL_GPIO_WritePin(GPIOB,con02_uart3_xieyoufa_Pin,GPIO_PIN_RESET);//切换为接收模式
HAL_GPIO_WritePin(con03_uart2_kongzhiqi_GPIO_Port,con03_uart2_kongzhiqi_Pin,GPIO_PIN_RESET);//切换为接收模式
HAL_Delay(2);
memset(bufMain,0,128);
spr000=sprintf((char*)bufMain,"sysytem reset...%5d, watchDogOn=%d, version:%d",5,WatchDogOn,Version_Soft[7]);
//HAL_UART_Transmit(&huart1,bufMain,32,300);
HAL_UART_Transmit(&huart2,bufMain,spr000,300);
//HAL_UART_Transmit(&huart3,bufMain,32,300);
HAL_GPIO_WritePin(GPIOB,Con01_uart1_rankonggai_Pin,GPIO_PIN_SET);//切换为接收模式
HAL_GPIO_WritePin(GPIOB,con02_uart3_xieyoufa_Pin,GPIO_PIN_SET);//切换为接收模式
HAL_GPIO_WritePin(con03_uart2_kongzhiqi_GPIO_Port,con03_uart2_kongzhiqi_Pin,GPIO_PIN_SET);//切换为接收模式
/* USER CODE END 2 */
/* Init scheduler */
osKernelInitialize();
/* Create the mutex(es) */
/* creation of myMutex01 */
myMutex01Handle = osMutexNew(&myMutex01_attributes);
/* creation of myMutex02 */
myMutex02Handle = osMutexNew(&myMutex02_attributes);
/* creation of myMutex03 */
myMutex03Handle = osMutexNew(&myMutex03_attributes);
/* creation of myMutex04 */
myMutex04Handle = osMutexNew(&myMutex04_attributes);
/* creation of myMutex05 */
myMutex05Handle = osMutexNew(&myMutex05_attributes);
/* creation of myMutex06 */
myMutex06Handle = osMutexNew(&myMutex06_attributes);
/* creation of myMutex07 */
myMutex07Handle = osMutexNew(&myMutex07_attributes);
/* creation of myMutex08 */
myMutex08Handle = osMutexNew(&myMutex08_attributes);
/* Create the recursive mutex(es) */
/* creation of myRecursiveMutex01 */
myRecursiveMutex01Handle = osMutexNew(&myRecursiveMutex01_attributes);
/* creation of myRecursiveMutex02 */
myRecursiveMutex02Handle = osMutexNew(&myRecursiveMutex02_attributes);
/* creation of myRecursiveMutex03 */
myRecursiveMutex03Handle = osMutexNew(&myRecursiveMutex03_attributes);
/* creation of myRecursiveMutex04 */
myRecursiveMutex04Handle = osMutexNew(&myRecursiveMutex04_attributes);
/* USER CODE BEGIN RTOS_MUTEX */
/* add mutexes, ... */
/* USER CODE END RTOS_MUTEX */
/* Create the semaphores(s) */
/* creation of myBinarySem01 */
myBinarySem01Handle = osSemaphoreNew(1, 1, &myBinarySem01_attributes);
/* creation of myBinarySem02 */
myBinarySem02Handle = osSemaphoreNew(1, 1, &myBinarySem02_attributes);
/* creation of myBinarySem03 */
myBinarySem03Handle = osSemaphoreNew(1, 1, &myBinarySem03_attributes);
/* creation of myBinarySem04 */
myBinarySem04Handle = osSemaphoreNew(1, 1, &myBinarySem04_attributes);
/* creation of myBinarySem05 */
myBinarySem05Handle = osSemaphoreNew(1, 1, &myBinarySem05_attributes);
/* creation of myBinarySem06 */
myBinarySem06Handle = osSemaphoreNew(1, 1, &myBinarySem06_attributes);
/* creation of myBinarySem07 */
myBinarySem07Handle = osSemaphoreNew(1, 1, &myBinarySem07_attributes);
/* creation of myBinarySem08 */
myBinarySem08Handle = osSemaphoreNew(1, 1, &myBinarySem08_attributes);
/* creation of myCountingSem01 */
myCountingSem01Handle = osSemaphoreNew(2, 2, &myCountingSem01_attributes);
/* creation of myCountingSem02 */
myCountingSem02Handle = osSemaphoreNew(2, 2, &myCountingSem02_attributes);
/* creation of myCountingSem03 */
myCountingSem03Handle = osSemaphoreNew(2, 2, &myCountingSem03_attributes);
/* creation of myCountingSem04 */
myCountingSem04Handle = osSemaphoreNew(2, 2, &myCountingSem04_attributes);
/* USER CODE BEGIN RTOS_SEMAPHORES */
/* add semaphores, ... */
/* USER CODE END RTOS_SEMAPHORES */
/* Create the timer(s) */
/* creation of myTimer01 */
myTimer01Handle = osTimerNew(Callback01, osTimerPeriodic, NULL, &myTimer01_attributes);
/* creation of myTimer02 */
myTimer02Handle = osTimerNew(Callback02, osTimerPeriodic, NULL, &myTimer02_attributes);
/* creation of myTimer03 */
myTimer03Handle = osTimerNew(Callback03, osTimerPeriodic, NULL, &myTimer03_attributes);
/* creation of myTimer04 */
myTimer04Handle = osTimerNew(Callback04, osTimerPeriodic, NULL, &myTimer04_attributes);
/* creation of myTimer05 */
myTimer05Handle = osTimerNew(Callback05, osTimerPeriodic, NULL, &myTimer05_attributes);
/* creation of myTimer06 */
myTimer06Handle = osTimerNew(Callback06, osTimerPeriodic, NULL, &myTimer06_attributes);
/* creation of myTimer07 */
myTimer07Handle = osTimerNew(Callback07, osTimerPeriodic, NULL, &myTimer07_attributes);
/* creation of myTimer08 */
myTimer08Handle = osTimerNew(Callback08, osTimerPeriodic, NULL, &myTimer08_attributes);
/* creation of myTimer09 */
myTimer09Handle = osTimerNew(Callback09, osTimerPeriodic, NULL, &myTimer09_attributes);
/* creation of myTimer10 */
myTimer10Handle = osTimerNew(Callback010, osTimerPeriodic, NULL, &myTimer10_attributes);
/* USER CODE BEGIN RTOS_TIMERS */
/* start timers, add new ones, ... */
/* USER CODE END RTOS_TIMERS */
/* Create the queue(s) */
/* creation of myQueue01 */
myQueue01Handle = osMessageQueueNew (16, sizeof(uint16_t), &myQueue01_attributes);
/* creation of myQueue02 */
myQueue02Handle = osMessageQueueNew (16, sizeof(uint16_t), &myQueue02_attributes);
/* creation of myQueue03 */
myQueue03Handle = osMessageQueueNew (16, sizeof(uint16_t), &myQueue03_attributes);
/* creation of myQueue04 */
myQueue04Handle = osMessageQueueNew (16, sizeof(uint16_t), &myQueue04_attributes);
/* creation of myQueue05 */
myQueue05Handle = osMessageQueueNew (16, sizeof(uint16_t), &myQueue05_attributes);
/* creation of myQueue06 */
myQueue06Handle = osMessageQueueNew (16, sizeof(uint16_t), &myQueue06_attributes);
/* USER CODE BEGIN RTOS_QUEUES */
/* add queues, ... */
/* USER CODE END RTOS_QUEUES */
/* Create the thread(s) */
/* creation of defaultTask */
defaultTaskHandle = osThreadNew(StartDefaultTask, NULL, &defaultTask_attributes);
/* creation of myTask02 */
myTask02Handle = osThreadNew(StartTask02, NULL, &myTask02_attributes);
/* creation of myTask03 */
myTask03Handle = osThreadNew(StartTask03, NULL, &myTask03_attributes);
/* creation of myTask04 */
myTask04Handle = osThreadNew(StartTask04, NULL, &myTask04_attributes);
/* creation of myTask05 */
myTask05Handle = osThreadNew(StartTask05, NULL, &myTask05_attributes);
/* creation of myTask06 */
myTask06Handle = osThreadNew(StartTask06, NULL, &myTask06_attributes);
/* creation of myTask07 */
myTask07Handle = osThreadNew(StartTask07, NULL, &myTask07_attributes);
/* creation of myTask08 */
myTask08Handle = osThreadNew(StartTask08, NULL, &myTask08_attributes);
/* creation of myTask09 */
myTask09Handle = osThreadNew(StartTask09, NULL, &myTask09_attributes);
/* creation of myTask10 */
myTask10Handle = osThreadNew(StartTask10, NULL, &myTask10_attributes);
/* creation of myTask11 */
myTask11Handle = osThreadNew(StartTask11, NULL, &myTask11_attributes);
/* creation of myTask12 */
myTask12Handle = osThreadNew(StartTask12, NULL, &myTask12_attributes);
/* USER CODE BEGIN RTOS_THREADS */
/* add threads, ... */
/* USER CODE END RTOS_THREADS */
/* creation of myEvent01 */
myEvent01Handle = osEventFlagsNew(&myEvent01_attributes);
/* creation of myEvent02 */
myEvent02Handle = osEventFlagsNew(&myEvent02_attributes);
/* creation of myEvent03 */
myEvent03Handle = osEventFlagsNew(&myEvent03_attributes);
/* creation of myEvent04 */
myEvent04Handle = osEventFlagsNew(&myEvent04_attributes);
/* creation of myEvent05 */
myEvent05Handle = osEventFlagsNew(&myEvent05_attributes);
/* creation of myEvent06 */
myEvent06Handle = osEventFlagsNew(&myEvent06_attributes);
/* creation of myEvent07 */
myEvent07Handle = osEventFlagsNew(&myEvent07_attributes);
/* creation of myEvent08 */
myEvent08Handle = osEventFlagsNew(&myEvent08_attributes);
/* USER CODE BEGIN RTOS_EVENTS */
/* add events, ... */
/* USER CODE END RTOS_EVENTS */
/* Start scheduler */
osKernelStart();
/* We should never get here as control is now taken by the scheduler */
/* Infinite loop */
/* USER CODE BEGIN WHILE */
while (1)
{
}
/* USER CODE END WHILE */
/* USER CODE BEGIN 3 */
/* USER CODE END 3 */
}
/**
* @brief System Clock Configuration
* @retval None
*/
void SystemClock_Config(void)
{
RCC_OscInitTypeDef RCC_OscInitStruct = {0};
RCC_ClkInitTypeDef RCC_ClkInitStruct = {0};
/** Initializes the RCC Oscillators according to the specified parameters
* in the RCC_OscInitTypeDef structure.
*/
RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSE;
RCC_OscInitStruct.HSEState = RCC_HSE_ON;
RCC_OscInitStruct.HSEPredivValue = RCC_HSE_PREDIV_DIV1;
RCC_OscInitStruct.HSIState = RCC_HSI_ON;
RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;
RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSE;
RCC_OscInitStruct.PLL.PLLMUL = RCC_PLL_MUL9;
if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK)
{
Error_Handler();
}
/** Initializes the CPU, AHB and APB buses clocks
*/
RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_SYSCLK
|RCC_CLOCKTYPE_PCLK1|RCC_CLOCKTYPE_PCLK2;
RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;
RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV2;
RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1;
if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_2) != HAL_OK)
{
Error_Handler();
}
}
/**
* @brief NVIC Configuration.
* @retval None
*/
static void MX_NVIC_Init(void)
{
/* USART3_IRQn interrupt configuration */
HAL_NVIC_SetPriority(USART3_IRQn, 5, 0);
HAL_NVIC_EnableIRQ(USART3_IRQn);
/* USART1_IRQn interrupt configuration */
HAL_NVIC_SetPriority(USART1_IRQn, 5, 0);
HAL_NVIC_EnableIRQ(USART1_IRQn);
/* USART2_IRQn interrupt configuration */
HAL_NVIC_SetPriority(USART2_IRQn, 5, 0);
HAL_NVIC_EnableIRQ(USART2_IRQn);
/* TIM4_IRQn interrupt configuration */
HAL_NVIC_SetPriority(TIM4_IRQn, 5, 0);
HAL_NVIC_EnableIRQ(TIM4_IRQn);
/* TIM1_UP_IRQn interrupt configuration */
HAL_NVIC_SetPriority(TIM1_UP_IRQn, 5, 0);
HAL_NVIC_EnableIRQ(TIM1_UP_IRQn);
/* DMA1_Channel6_IRQn interrupt configuration */
HAL_NVIC_SetPriority(DMA1_Channel6_IRQn, 5, 0);
HAL_NVIC_EnableIRQ(DMA1_Channel6_IRQn);
/* DMA1_Channel5_IRQn interrupt configuration */
HAL_NVIC_SetPriority(DMA1_Channel5_IRQn, 5, 0);
HAL_NVIC_EnableIRQ(DMA1_Channel5_IRQn);
/* DMA1_Channel3_IRQn interrupt configuration */
HAL_NVIC_SetPriority(DMA1_Channel3_IRQn, 5, 0);
HAL_NVIC_EnableIRQ(DMA1_Channel3_IRQn);
}
/**
* @brief CRC Initialization Function
* @param None
* @retval None
*/
static void MX_CRC_Init(void)
{
/* USER CODE BEGIN CRC_Init 0 */
/* USER CODE END CRC_Init 0 */
/* USER CODE BEGIN CRC_Init 1 */
/* USER CODE END CRC_Init 1 */
hcrc.Instance = CRC;
if (HAL_CRC_Init(&hcrc) != HAL_OK)
{
Error_Handler();
}
/* USER CODE BEGIN CRC_Init 2 */
/* USER CODE END CRC_Init 2 */
}
/**
* @brief DAC Initialization Function
* @param None
* @retval None
*/
static void MX_DAC_Init(void)
{
/* USER CODE BEGIN DAC_Init 0 */
/* USER CODE END DAC_Init 0 */
DAC_ChannelConfTypeDef sConfig = {0};
/* USER CODE BEGIN DAC_Init 1 */
/* USER CODE END DAC_Init 1 */
/** DAC Initialization
*/
hdac.Instance = DAC;
if (HAL_DAC_Init(&hdac) != HAL_OK)
{
Error_Handler();
}
/** DAC channel OUT2 config
*/
sConfig.DAC_Trigger = DAC_TRIGGER_SOFTWARE;
sConfig.DAC_OutputBuffer = DAC_OUTPUTBUFFER_ENABLE;
if (HAL_DAC_ConfigChannel(&hdac, &sConfig, DAC_CHANNEL_2) != HAL_OK)
{
Error_Handler();
}
/* USER CODE BEGIN DAC_Init 2 */
/* USER CODE END DAC_Init 2 */
}
/**
* @brief TIM1 Initialization Function
* @param None
* @retval None
*/
static void MX_TIM1_Init(void)
{
/* USER CODE BEGIN TIM1_Init 0 */
/* USER CODE END TIM1_Init 0 */
TIM_ClockConfigTypeDef sClockSourceConfig = {0};
TIM_MasterConfigTypeDef sMasterConfig = {0};
/* USER CODE BEGIN TIM1_Init 1 */
/* USER CODE END TIM1_Init 1 */
htim1.Instance = TIM1;
htim1.Init.Prescaler = 0;
htim1.Init.CounterMode = TIM_COUNTERMODE_UP;
htim1.Init.Period = 65535;
htim1.Init.ClockDivision = TIM_CLOCKDIVISION_DIV4;
htim1.Init.RepetitionCounter = 0;
htim1.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_DISABLE;
if (HAL_TIM_Base_Init(&htim1) != HAL_OK)
{
Error_Handler();
}
sClockSourceConfig.ClockSource = TIM_CLOCKSOURCE_INTERNAL;
if (HAL_TIM_ConfigClockSource(&htim1, &sClockSourceConfig) != HAL_OK)
{
Error_Handler();
}
sMasterConfig.MasterOutputTrigger = TIM_TRGO_RESET;
sMasterConfig.MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE;
if (HAL_TIMEx_MasterConfigSynchronization(&htim1, &sMasterConfig) != HAL_OK)
{
Error_Handler();
}
/* USER CODE BEGIN TIM1_Init 2 */
/* USER CODE END TIM1_Init 2 */
}
/**
* @brief TIM4 Initialization Function
* @param None
* @retval None
*/
static void MX_TIM4_Init(void)
{
/* USER CODE BEGIN TIM4_Init 0 */
/* USER CODE END TIM4_Init 0 */
TIM_ClockConfigTypeDef sClockSourceConfig = {0};
TIM_MasterConfigTypeDef sMasterConfig = {0};
/* USER CODE BEGIN TIM4_Init 1 */
/* USER CODE END TIM4_Init 1 */
htim4.Instance = TIM4;
htim4.Init.Prescaler = 0;
htim4.Init.CounterMode = TIM_COUNTERMODE_UP;
htim4.Init.Period = 65535;
htim4.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1;
htim4.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_DISABLE;
if (HAL_TIM_Base_Init(&htim4) != HAL_OK)
{
Error_Handler();
}
sClockSourceConfig.ClockSource = TIM_CLOCKSOURCE_INTERNAL;
if (HAL_TIM_ConfigClockSource(&htim4, &sClockSourceConfig) != HAL_OK)
{
Error_Handler();
}
sMasterConfig.MasterOutputTrigger = TIM_TRGO_RESET;
sMasterConfig.MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE;
if (HAL_TIMEx_MasterConfigSynchronization(&htim4, &sMasterConfig) != HAL_OK)
{
Error_Handler();
}
/* USER CODE BEGIN TIM4_Init 2 */
/* USER CODE END TIM4_Init 2 */
}
/**
* @brief UART5 Initialization Function
* @param None
* @retval None
*/
static void MX_UART5_Init(void)
{
/* USER CODE BEGIN UART5_Init 0 */
/* USER CODE END UART5_Init 0 */
/* USER CODE BEGIN UART5_Init 1 */
/* USER CODE END UART5_Init 1 */
huart5.Instance = UART5;
huart5.Init.BaudRate = 115200;
huart5.Init.WordLength = UART_WORDLENGTH_8B;
huart5.Init.StopBits = UART_STOPBITS_1;
huart5.Init.Parity = UART_PARITY_NONE;
huart5.Init.Mode = UART_MODE_TX_RX;
huart5.Init.HwFlowCtl = UART_HWCONTROL_NONE;
huart5.Init.OverSampling = UART_OVERSAMPLING_16;
if (HAL_UART_Init(&huart5) != HAL_OK)
{
Error_Handler();
}
/* USER CODE BEGIN UART5_Init 2 */
/* USER CODE END UART5_Init 2 */
}
/**
* @brief USART1 Initialization Function
* @param None
* @retval None
*/
static void MX_USART1_UART_Init(void)
{
/* USER CODE BEGIN USART1_Init 0 */
extern uint8_t USART1_RX_BUF[Uart1_BUF_SIZE];
/* USER CODE END USART1_Init 0 */
/* USER CODE BEGIN USART1_Init 1 */
/* USER CODE END USART1_Init 1 */
huart1.Instance = USART1;
huart1.Init.BaudRate = 9600;
huart1.Init.WordLength = UART_WORDLENGTH_8B;
huart1.Init.StopBits = UART_STOPBITS_1;
huart1.Init.Parity = UART_PARITY_NONE;
huart1.Init.Mode = UART_MODE_TX_RX;
huart1.Init.HwFlowCtl = UART_HWCONTROL_NONE;
huart1.Init.OverSampling = UART_OVERSAMPLING_16;
if (HAL_UART_Init(&huart1) != HAL_OK)
{
Error_Handler();
}
/* USER CODE BEGIN USART1_Init 2 */
__HAL_UART_ENABLE_IT(&huart1, UART_IT_IDLE);
HAL_UART_Receive_DMA(&huart1,USART1_RX_BUF,Uart1_BUF_SIZE);
/* USER CODE END USART1_Init 2 */
}
/**
* @brief USART2 Initialization Function
* @param None
* @retval None
*/
static void MX_USART2_UART_Init(void)
{
/* USER CODE BEGIN USART2_Init 0 */
/* USER CODE END USART2_Init 0 */
/* USER CODE BEGIN USART2_Init 1 */
/* USER CODE END USART2_Init 1 */
huart2.Instance = USART2;
huart2.Init.BaudRate = 38400;//19200
huart2.Init.WordLength = UART_WORDLENGTH_8B;
huart2.Init.StopBits = UART_STOPBITS_1;
huart2.Init.Parity = UART_PARITY_NONE;
huart2.Init.Mode = UART_MODE_TX_RX;
huart2.Init.HwFlowCtl = UART_HWCONTROL_NONE;
huart2.Init.OverSampling = UART_OVERSAMPLING_16;
if (HAL_UART_Init(&huart2) != HAL_OK)
{
Error_Handler();
}
/* USER CODE BEGIN USART2_Init 2 */
__HAL_UART_ENABLE_IT(&huart2, UART_IT_IDLE);
HAL_UART_Receive_DMA(&huart2,USART2_RX_BUF,Uart2_BUF_SIZE);
/* USER CODE END USART2_Init 2 */
}
/**
* @brief USART3 Initialization Function
* @param None
* @retval None
*/
static void MX_USART3_UART_Init(void)
{
/* USER CODE BEGIN USART3_Init 0 */
/* USER CODE END USART3_Init 0 */
/* USER CODE BEGIN USART3_Init 1 */
/* USER CODE END USART3_Init 1 */
huart3.Instance = USART3;
huart3.Init.BaudRate = 9600;
huart3.Init.WordLength = UART_WORDLENGTH_8B;
huart3.Init.StopBits = UART_STOPBITS_1;
huart3.Init.Parity = UART_PARITY_NONE;
huart3.Init.Mode = UART_MODE_TX_RX;
huart3.Init.HwFlowCtl = UART_HWCONTROL_NONE;
huart3.Init.OverSampling = UART_OVERSAMPLING_16;
if (HAL_UART_Init(&huart3) != HAL_OK)
{
Error_Handler();
}
/* USER CODE BEGIN USART3_Init 2 */
__HAL_UART_ENABLE_IT(&huart3, UART_IT_IDLE);
HAL_UART_Receive_DMA(&huart3,USART3_RX_BUF,Uart3_BUF_SIZE);
/* USER CODE END USART3_Init 2 */
}
/**
* Enable DMA controller clock
*/
static void MX_DMA_Init(void)
{
/* DMA controller clock enable */
__HAL_RCC_DMA1_CLK_ENABLE();
__HAL_RCC_DMA2_CLK_ENABLE();
/* DMA interrupt init */
/* DMA1_Channel4_IRQn interrupt configuration */
HAL_NVIC_SetPriority(DMA1_Channel4_IRQn, 5, 0);
HAL_NVIC_EnableIRQ(DMA1_Channel4_IRQn);
/* DMA2_Channel4_5_IRQn interrupt configuration */
HAL_NVIC_SetPriority(DMA2_Channel4_5_IRQn, 5, 0);
HAL_NVIC_EnableIRQ(DMA2_Channel4_5_IRQn);
}
/**
* @brief GPIO Initialization Function
* @param None
* @retval None
*/
static void MX_GPIO_Init(void)
{
GPIO_InitTypeDef GPIO_InitStruct = {0};
/* GPIO Ports Clock Enable */
__HAL_RCC_GPIOD_CLK_ENABLE();
__HAL_RCC_GPIOA_CLK_ENABLE();
__HAL_RCC_GPIOB_CLK_ENABLE();
__HAL_RCC_GPIOC_CLK_ENABLE();
/*Configure GPIO pin Output Level */
HAL_GPIO_WritePin(GPIOA, LED1_Pin|LED2_Pin|con03_uart2_kongzhiqi_Pin, GPIO_PIN_RESET);
/*Configure GPIO pin Output Level */
HAL_GPIO_WritePin(GPIOB, con02_uart3_xieyoufa_Pin|Con01_uart1_rankonggai_Pin, GPIO_PIN_RESET);
/*Configure GPIO pin Output Level */
HAL_GPIO_WritePin(WDI_sp706_kanmemgou_GPIO_Port, WDI_sp706_kanmemgou_Pin, GPIO_PIN_RESET);
/*Configure GPIO pins : LED1_Pin LED2_Pin con03_uart2_kongzhiqi_Pin */
GPIO_InitStruct.Pin = LED1_Pin|LED2_Pin|con03_uart2_kongzhiqi_Pin;
GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
GPIO_InitStruct.Pull = GPIO_NOPULL;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
HAL_GPIO_Init(GPIOA, &GPIO_InitStruct);
/*Configure GPIO pins : con02_uart3_xieyoufa_Pin Con01_uart1_rankonggai_Pin */
GPIO_InitStruct.Pin = con02_uart3_xieyoufa_Pin|Con01_uart1_rankonggai_Pin;
GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
GPIO_InitStruct.Pull = GPIO_NOPULL;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
HAL_GPIO_Init(GPIOB, &GPIO_InitStruct);
/*Configure GPIO pins : IN01_Pin PB15 */
GPIO_InitStruct.Pin = GPIO_PIN_14|GPIO_PIN_15;
GPIO_InitStruct.Mode = GPIO_MODE_INPUT;
GPIO_InitStruct.Pull = GPIO_NOPULL;
HAL_GPIO_Init(GPIOB, &GPIO_InitStruct);
/*Configure GPIO pins : PC6 PC7 PC8 PC9 */
GPIO_InitStruct.Pin = GPIO_PIN_6|GPIO_PIN_7|GPIO_PIN_8|GPIO_PIN_9;
GPIO_InitStruct.Mode = GPIO_MODE_INPUT;
GPIO_InitStruct.Pull = GPIO_NOPULL;
HAL_GPIO_Init(GPIOC, &GPIO_InitStruct);
/*Configure GPIO pins : PA8 PA11 */
GPIO_InitStruct.Pin = GPIO_PIN_8|GPIO_PIN_11;
GPIO_InitStruct.Mode = GPIO_MODE_INPUT;
GPIO_InitStruct.Pull = GPIO_NOPULL;
HAL_GPIO_Init(GPIOA, &GPIO_InitStruct);
/*Configure GPIO pin : WDI_sp706_kanmemgou_Pin */
GPIO_InitStruct.Pin = WDI_sp706_kanmemgou_Pin;
if(WatchDogOn)//打开看门狗sp706
//if(1)//打开看门狗sp706
{
//
GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
}
else
{
GPIO_InitStruct.Mode = GPIO_MODE_INPUT;
}
GPIO_InitStruct.Pull = GPIO_NOPULL;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
HAL_GPIO_Init(WDI_sp706_kanmemgou_GPIO_Port, &GPIO_InitStruct);
}
/* USER CODE BEGIN 4 */
/**
* @funNm : delay_sys_us
* @brief : 延时nus
* @param : nus:要延时的us数. 0~204522252(最大值即2^32/fac_us@fac_us=168)
* @retval: void
*/
void delay_sys_us(uint32_t Delay)//1个delay,大概1.5us
{
uint32_t cnt = Delay * 8;
uint32_t i = 0;
for(i = 0; i < cnt; i++)__NOP();
}
/* USER CODE END 4 */
/* USER CODE BEGIN Header_StartDefaultTask */
/**
* @brief Function implementing the defaultTask thread.
* @param argument: Not used
* @retval None
*/
/* USER CODE END Header_StartDefaultTask */
void StartDefaultTask(void *argument)
{
/* USER CODE BEGIN 5 */
/* Infinite loop */
for(;;)
{
osDelay(1);
}
/* USER CODE END 5 */
}
/* USER CODE BEGIN Header_StartTask02 */
/**
* @brief Function implementing the myTask02 thread.
* @param argument: Not used
* @retval None
*/
uint8_t Flash_Change = 0; //定义接收数组
uni_float tprture001,tprture002,tprture003,Yewei001,tprtureAver;
/* USER CODE END Header_StartTask02 */
/*
//发送卸油阀传感器命令轮询
//发送角度传感器命令轮询
//发送壁挂油传感器命令轮询
//发送智能海底阀传感器命令轮询
//发送油气回收传感器命令轮询
*/
void StartTask02(void *argument) //卸油阀总线传感器命令轮询 UART3
{
/* USER CODE BEGIN StartTask02 */
uint8_t i001=0,i002 = 0;
uint16_t ModbusCRC = 0,xyfaddr_max = 0,hdfaddr_max; //xyfaddr_max:卸油阀最高地址,根据每仓卸油阀之和计算得出
static uint16_t i = 0,j = 0,receive_error = 0;
HDF_Inf* phdf = hdf_inf;
KZQ_Inf* pkzq = &kzq_inf;
XYF_Inf* pxyf = xyf_inf;
Cang_Inf* pcang = &cang_inf;
Angle_Inf* pangle = &angle_inf;
xyfaddr_max=0;
hdfaddr_max=0;
for(i = 0;i < pcang->Cang_Num;i++)
{
xyfaddr_max += pcang->XYF_Num[i];
hdfaddr_max += pcang->HDF_Num[i];
}
i = 0;
extern uint8_t USART2_RX_BUF002[Uart2_BUF_SIZE];
extern uint8_t USART1_RX_BUF002[Uart2_BUF_SIZE];
extern uint8_t USART3_RX_BUF002[Uart2_BUF_SIZE];
extern int data_lengthU2,data_lengthU1,data_lengthU3;
extern int flagU1Rx,flagU2Rx,flagU3Rx;
extern uint8_t USART3_RX_BUF002_print[Uart3_BUF_SIZE];
extern uint8_t XYF_TxBuf[70];
extern uint16_t Uart_len_TouChuan;
/* Infinite loop */
for(;;)
{
osDelay(10); //以ms为单位
//HAL_GPIO_TogglePin(GPIOA,GPIO_PIN_0);
HAL_GPIO_TogglePin(WDI_sp706_kanmemgou_GPIO_Port, WDI_sp706_kanmemgou_Pin);
// continue;
if(Flash_Change) //如果有对Flash进行改动,则重新计算xyfaddr_max
{
xyfaddr_max = 0;
hdfaddr_max = 0;
for(i = 0;i < pcang->Cang_Num;i++)
{
xyfaddr_max += pcang->XYF_Num[i];
hdfaddr_max += pcang->HDF_Num[i];
}
Flash_Change = 0;
}
if(pkzq->USE_XYF == 0) //平台未控制卸油阀总线,正常轮询数据
{
if(i001==0) //发送卸油阀传感器命令轮询
{
if ((pcang->XYF_INSTALL != 0) && (pcang->XYF_Type != 2))
{
ModbusCRC = LIB_CRC_MODBUS(CMD_XYF, 6);
CMD_XYF[6] = ModbusCRC >> 8;
CMD_XYF[7] = ModbusCRC & 0xff;
HAL_GPIO_WritePin(GPIOB, con02_uart3_xieyoufa_Pin, GPIO_PIN_RESET); //
delay_sys_us(80);
HAL_UART_Transmit_IT(&huart3, CMD_XYF, 8);
while (huart3.gState == HAL_UART_STATE_BUSY_TX)
{
osDelay(1);
}
HAL_GPIO_WritePin(GPIOB, con02_uart3_xieyoufa_Pin, GPIO_PIN_SET); //
pxyf[CMD_XYF[0] - 0x10].RTData_Num++; //每个传感器发送帧累加
if (CMD_XYF[0] - 0x10 < xyfaddr_max)
CMD_XYF[0]++;
else
CMD_XYF[0] = 0x11;
}
else
{
i001 = 3;
}
}
if (i001 == 3) //发送姿态传感器轮询
{
if (pcang->Angle) //发送角度传感器命令轮询
{
ModbusCRC = LIB_CRC_MODBUS(CMD_Angle_XY, 6);
CMD_Angle_XY[6] = ModbusCRC >> 8;
CMD_Angle_XY[7] = ModbusCRC & 0xff;
HAL_GPIO_WritePin(GPIOB, con02_uart3_xieyoufa_Pin, GPIO_PIN_RESET);
delay_sys_us(80);
HAL_UART_Transmit(&huart3, CMD_Angle_XY, 8, 100); //只支持单指令读角度取传感器数据
delay_sys_us(80);
HAL_GPIO_WritePin(GPIOB, con02_uart3_xieyoufa_Pin, GPIO_PIN_SET);
if (pangle->RTData_NumX > RT_ERRORCNT)
{
pangle->RTData_NumX = RT_ERRORCNT;
pangle->Angle_ErrorCnt = RT_ERRORCNT;
}
else
pangle->RTData_NumX++;
}
else
{
i001 = 6;
}
}
if(i001==6) //发送壁挂油传感器命令轮询
{
if(pcang->BGY_INSTALL)
{
ModbusCRC = LIB_CRC_MODBUS(CMD_Biguayou,6);
CMD_Biguayou[6] = ModbusCRC>>8;
CMD_Biguayou[7] = ModbusCRC&0xff;
HAL_GPIO_WritePin(GPIOB,con02_uart3_xieyoufa_Pin,GPIO_PIN_RESET);
delay_sys_us(80);
HAL_UART_Transmit(&huart3,CMD_Biguayou,8,100); //只支持单指令读角度取传感器数据
delay_sys_us(80);
HAL_GPIO_WritePin(GPIOB,con02_uart3_xieyoufa_Pin,GPIO_PIN_SET);
}
else
{
i001=9;
}
}
if (i001 == 9) //发送智能海底阀传感器命令轮询
{
if (pcang->HDF_INSTALL != 0 && pcang->HDF_Type)
{
ModbusCRC = LIB_CRC_MODBUS(CMD_HDF, 14);
CMD_HDF[14] = ModbusCRC >> 8;
CMD_HDF[15] = ModbusCRC & 0xff;
HAL_GPIO_WritePin(GPIOB, con02_uart3_xieyoufa_Pin, GPIO_PIN_RESET);
delay_sys_us(80);
HAL_UART_Transmit(&huart3, CMD_HDF, 16, 100); //只支持单指令读角度取传感器数据
delay_sys_us(80);
HAL_GPIO_WritePin(GPIOB, con02_uart3_xieyoufa_Pin, GPIO_PIN_SET);
if (phdf[CMD_HDF[0] - 0x20].RTData_Num > 50) //收发数据错误次数RT_ERRORCNT
{
// phdf[CMD_HDF[0]-0x20].RTData_Num = RT_ERRORCNT;
// phdf[CMD_HDF[0]-0x20].HDF_ErrorCnt = RT_ERRORCNT;
}
else
phdf[CMD_HDF[0] - 0x20].RTData_Num++; //每个传感器发送帧累加
if (CMD_HDF[0] - 0x21 < hdfaddr_max)
CMD_HDF[0]++;
else
CMD_HDF[0] = 0x21;
}
else
{
i001 = 12;
}
}
if(i001==12) //发送油气回收传感器命令轮询
{
if(pcang->YQHS)
{
ModbusCRC = LIB_CRC_MODBUS(CMD_YQHS,6);
CMD_YQHS[6] = ModbusCRC>>8;
CMD_YQHS[7] = ModbusCRC&0xff;
HAL_GPIO_WritePin(GPIOB,con02_uart3_xieyoufa_Pin,GPIO_PIN_RESET);
delay_sys_us(80);
HAL_UART_Transmit(&huart3,CMD_YQHS,8,100); //只支持单指令读角度取传感器数据
delay_sys_us(80);
HAL_GPIO_WritePin(GPIOB,con02_uart3_xieyoufa_Pin,GPIO_PIN_SET);
}
else
{
i001=0;
continue;
}
}
}
else //平台通过卸油阀总线直接操作传感器
{
if(i002 == 3)
{
HAL_GPIO_WritePin(GPIOB,con02_uart3_xieyoufa_Pin,GPIO_PIN_RESET);//
delay_sys_us(80);
#if 0
if((XYF_TxBuf[0] == 0x0D)&&(XYF_TxBuf[0] == 0x0A))
HAL_UART_Transmit(&huart3,XYF_TxBuf,12,100);
else
HAL_UART_Transmit(&huart3,XYF_TxBuf,8,100);
delay_sys_us(80);
#else
HAL_UART_Transmit_IT(&huart3,XYF_TxBuf,Uart_len_TouChuan);
while (huart3.gState == HAL_UART_STATE_BUSY_TX)
{
osDelay(1);
}
#endif
HAL_GPIO_WritePin(GPIOB,con02_uart3_xieyoufa_Pin,GPIO_PIN_SET); //
}
else if(i002 == 0x06)
{
#if 0
HAL_GPIO_WritePin(GPIOB,con02_uart3_xieyoufa_Pin,GPIO_PIN_RESET);//
delay_sys_us(80);
HAL_UART_Transmit(&huart3,ALL_TxBuf,16,100);
delay_sys_us(80);
HAL_GPIO_WritePin(GPIOB,con02_uart3_xieyoufa_Pin,GPIO_PIN_SET);//
}
else if(i002 == 0x09)//slm 0x0c
{
HAL_GPIO_WritePin(GPIOB,con02_uart3_xieyoufa_Pin,GPIO_PIN_RESET);//
delay_sys_us(80);
HAL_UART_Transmit(&huart3,ALL_TxBuf,Uart_len_TouChuan,100);
delay_sys_us(80);
HAL_GPIO_WritePin(GPIOB,con02_uart3_xieyoufa_Pin,GPIO_PIN_SET);//
#endif
pkzq->USE_XYF = 0;
i002 = 0;
}
i002++;
if((flagU3Rx==1) && (i002 > 3))
{
pkzq->USE_XYF = 0;
i002 = 0;
continue;
}
}
//来自UART3的命令 电路板上标志位卸油阀
if(flagU3Rx==1)
{
flagU3Rx=0;
#if 0
if(USART3_RX_BUF002[0]!=0x11)
{
pxyf[1].XYF_ErrorCnt++;
if(pxyf[1].XYF_ErrorCnt>35)
{
pxyf[1].XYF_Error = 1;
}
}
if(USART3_RX_BUF002[0]!=0x12)
{
pxyf[2].XYF_ErrorCnt++;
if(pxyf[2].XYF_ErrorCnt>35)
{
pxyf[2].XYF_Error = 1;
}
}
#endif
if(USART3_RX_BUF002[0] >= 0x10 && USART3_RX_BUF002[0] <= 0x1F) //卸油阀数据
{
ModbusCRC = USART3_RX_BUF002[5]<<8;
ModbusCRC |= USART3_RX_BUF002[6];
//pxyf[USART3_RX_BUF002[0]-0x10].RTData_Num = 1;
if(USART3_RX_BUF002[1]!=0x03&&USART3_RX_BUF002[1]!=0x06) //校验读写属性
{
receive_error = 1;
}
else if(USART3_RX_BUF002[2] != 0x02) //校验数据长度
{
receive_error = 1;
}
else if(ModbusCRC != LIB_CRC_MODBUS(USART3_RX_BUF002,5)) //校验CRC
{
receive_error = 1;
}
if(receive_error == 0)
{
pxyf[USART3_RX_BUF002[0]-0x10].XYF_ErrorCnt = 0;
pxyf[USART3_RX_BUF002[0]-0x10].XYF_Error = 0;
if(USART3_RX_BUF002[1] == 0x03) //读取数据返回
{
#if 0
if(USART3_RX_BUF002[3]>0x01)//阀门开关状态
{
pxyf[i].XYF_ErrorCnt++;
}
else if(i < XYF_BUF_DEP)
{
i++;
}
if(i == XYF_BUF_DEP)
{
i = 0;
}
#else
pxyf[USART3_RX_BUF002[0] - 0x10].XYF_Data1[0] = USART3_RX_BUF002[3];
pxyf[USART3_RX_BUF002[0] - 0x10].XYF_Data2[0] = USART3_RX_BUF002[4];
#endif
XYF_state(USART3_RX_BUF002[0] - 0x10);
}
else if(USART3_RX_BUF002[1] == 0x06) //写入数据返回 判断写入是否成功
{
//清除控制器占用标志
//整理卸油阀协议后添加
}
i001=3;
continue;
}
}
else if(USART3_RX_BUF002[0] >=0x70 && USART3_RX_BUF002[0] <= 0x7f) //姿态数据,目前最多支持3轴
{
ModbusCRC = USART3_RX_BUF002[7]<<8;
ModbusCRC |= USART3_RX_BUF002[8];
pangle->RTData_NumX = 1;
if(USART3_RX_BUF002[1]!=0x03&&USART3_RX_BUF002[1]!=0x06) //校验读写属性
{
receive_error = 1;
}
else if(USART3_RX_BUF002[2] >= 0x08) //校验数据长度
{
receive_error = 1;
}
else if(ModbusCRC != LIB_CRC_MODBUS(USART3_RX_BUF002,USART3_RX_BUF002[2]+3)) //校验CRC
{
//receive_error = 1;
}
if(receive_error == 0)
{
if(USART3_RX_BUF002[1] ==0x03)
{
if(j < ANGLE_BUF_DEP)
{
pangle->Angle_ErrorCnt = 0;
//if(USART3_RX_BUF002[2] == 0x02)
pangle->Angle_DataX[j] = USART3_RX_BUF002[3]<<8|USART3_RX_BUF002[4];
//if(USART3_RX_BUF002[2] > 0x02)
pangle->Angle_DataY[j] = USART3_RX_BUF002[5]<<8|USART3_RX_BUF002[6];
// if(USART3_RX_BUF002[2] > 0x04)
pangle->Angle_DataZ[j] = USART3_RX_BUF002[7]<<8|USART3_RX_BUF002[8];
j++;
}
if(j == ANGLE_BUF_DEP)
{
j = 0;
}
}
else
{
//整理卸油阀协议后添加
}
}
}
else if(USART3_RX_BUF002[0] >= 0x20 && USART3_RX_BUF002[0] <= 0x2F ) //智能海底阀数据
{
Get_ZN_hdf_data();
}
else if(USART3_RX_BUF002[0] == 0xe4) //油气回收数据
{
Get_Yqhuishou_data();
}
else if(USART3_RX_BUF002[0] >= 0x81 && USART3_RX_BUF002[0] <= 0x8F) //壁挂油数据
{
Get_Biguayou_data();
}
receive_error = 0;
}
else
{
if (i001 == 2)
{
if(CMD_XYF[0] == 0x11)
{
i = xyfaddr_max;
}
else
{
i = CMD_XYF[0] - 0x11;
}
pxyf[i].XYF_ErrorCnt++;
if (pxyf[i].XYF_ErrorCnt > pcang->sensorBusMaxReTry)
{
pxyf[i].XYF_ErrorCnt = pcang->sensorBusMaxReTry + 1;
pxyf[i].XYF_Error = 1;
}
}
}
if(i001<15)
i001++;
else
i001 = 0;
osDelay(40);
}
/* USER CODE END StartTask02 */
}
/* USER CODE BEGIN Header_StartTask03 */
/**
* @brief Function implementing the myTask03 thread.
* @param argument: Not used
* @retval None
*/
/* USER CODE END Header_StartTask03 */
/*
//发送华天三点式温度传感器命令轮询
//发送人控大盖盖命令轮询
//雷达液位传感器命令
//发送小盖传感器轮询
//发送磁致伸缩液位计命令轮询
?
*/
#include "rkg.h"
void StartTask03(void *argument) //人孔盖总线传感器 UART1
{
/* USER CODE BEGIN StartTask03 */
/* Infinite loop */
/* USER CODE BEGIN StartTask02 */
static uint8_t i001=0,i002 = 0,i003 = 0,receive_error = 0;
uint16_t rkgaddr_max = 0,temaddr_max = 0,leveladdr_max = 0,RKG_angle = 0;
static uint16_t i = 0,rkdg_cnt = 0,rkxg_cnt = 0,level_cnt = 0,tem_cnt = 0,temp_dot_cnt=0,temp_dot_dex=0,ModbusCRC = 0,ModbusCRC1 = 0;
uint16_t rx_len,head = 0;
S_ANGLEDATA* psATsk3 = gs_AngleData;
KZQ_Inf* pkzq = &kzq_inf;
RKG_Inf* prkg = rkg_inf;
Cang_Inf* pcang = &cang_inf;
Level_Inf* plevel = level_inf;
TEM_Inf* ptem = tem_inf;
typedef union{
float QDGH_data_temp; //青鸟贵和磁致伸缩液位温度一体传感器
uint8_t arr[4];
}Hex_to_float;
static Hex_to_float hex_to_float;
leveladdr_max=0;
if(pcang->Temperture==2)
pcang->Temperture=3;
for(i = 0;i < pcang->Cang_Num;i++)
{
rkgaddr_max += pcang->RKG_Num[i]; //人孔盖最大地址
leveladdr_max++;
}
/*if(pcang->RKG_Type==0)
{
rkgaddr_max += 1;
}*/
//if(((pcang->Level)|0xff) == 0)
{
if(((pcang->Temperture)&0xff) == 0)
{
temaddr_max = leveladdr_max; //温度最大集成地址
}
else
{
temaddr_max = leveladdr_max*(pcang->Temperture&0xff); //温度最大离散地址
}
}
i = 0;
extern uint8_t USART1_RX_BUF002[Uart2_BUF_SIZE];
extern int data_lengthU1;
extern int flagU1Rx;
extern uint8_t USART1_RX_BUF002_print[Uart1_BUF_SIZE];
/* Infinite loop */
for(;;)
{
osDelay(10); //以ms为单位
//HAL_GPIO_TogglePin(GPIOA,GPIO_PIN_0); //已经移至task12 500ms闪烁 邵磊明修改
HAL_GPIO_TogglePin(WDI_sp706_kanmemgou_GPIO_Port, WDI_sp706_kanmemgou_Pin);
if(Flash_Change)
{
rkgaddr_max = 0;
leveladdr_max=0;
if(pcang->Temperture==2)
pcang->Temperture=3;
for(i = 0;i < pcang->Cang_Num;i++)
{
rkgaddr_max += pcang->RKG_Num[i]; //人孔盖最大地址
leveladdr_max++;
}
/*if(pcang->RKG_Type==0)
{
rkgaddr_max += 1;
}*/
//if(((pcang->Level>)|0xff) == 0)
{
if(((pcang->Temperture)&0xff) == 0)
{
temaddr_max = leveladdr_max; //温度最大集成地址
}
else
{
temaddr_max = leveladdr_max*(pcang->Temperture&0xff); //温度最大离散地址
}
}
Flash_Change = 0;
}
if(pkzq->USE_RKG == 0) //平台未控制卸油阀总线,正常轮询数据
{
if(i001==0) //发送人控大盖盖命令轮询
{
if((pcang->RKG_DG != 0) && (pcang->RKG_Type!=2))
{
if(pcang->RKG_Type == 0)
{
if(CMD_RKG[0] == 0x1)
{
if(i003 >= rkgaddr_max)
i003 = 0;
++i003;
CMD_RKG[0] = 1+i003*2;
prkg[i003].RTData_Num++;
}
else
{
CMD_RKG[0] = 0x1;
prkg[0].RTData_Num++;
}
}
else
{
prkg[CMD_RKG[0] - 0x30].RTData_Num++;
if(CMD_RKG[0] - 0x30 < rkgaddr_max)
{
++i003;
CMD_RKG[0]=0x30+i003;
}
else
{
CMD_RKG[0] = 0x31;
i003 = 1;
}
}
ModbusCRC = LIB_CRC_MODBUS(CMD_RKG,6);
CMD_RKG[6] = ModbusCRC>>8;
CMD_RKG[7] = ModbusCRC&0xff;
HAL_GPIO_WritePin(GPIOB,Con01_uart1_rankonggai_Pin,GPIO_PIN_RESET);//
delay_sys_us(80);
//if(pcang->RKG_Type == 0x01)
// HAL_UART_Transmit(&huart1,Data_Head,2,10);
{
HAL_UART_Transmit_IT(&huart1,CMD_RKG,8);
while (huart1.gState == HAL_UART_STATE_BUSY_TX)
{
osDelay(1);
}
} //HAL_UART_Transmit(&huart1,CMD_RKG,8,100);
//if(pcang->RKG_Type == 0x01)
// HAL_UART_Transmit(&huart1,Data_Head,2,10);
//delay_sys_us(80);
HAL_GPIO_WritePin(GPIOB,Con01_uart1_rankonggai_Pin,GPIO_PIN_SET);//
#if 0
if(prkg[CMD_RKG[0] - 0x30].RTData_Num > RT_ERRORCNT) //每个传感器每发送一帧 基准角度为0x30
{
prkg[CMD_RKG[0] - 0x30].RTData_Num = RT_ERRORCNT;
prkg[CMD_RKG[0] - 0x30].RKDG_ErrorCnt = RT_ERRORCNT;
}
else
#endif
}
else
i001 = 3;
}
if(i001==3) //发送小盖传感器轮询
{
if(pcang->RKG_XG == 0x01)
{
ModbusCRC = LIB_CRC_MODBUS(CMD_RKG_XG,6);
CMD_RKG_XG[6] = ModbusCRC>>8;
CMD_RKG_XG[7] = ModbusCRC&0xff;
HAL_GPIO_WritePin(GPIOB,Con01_uart1_rankonggai_Pin,GPIO_PIN_RESET);//
delay_sys_us(80);
if(pcang->RKG_Type == 0x01)
HAL_UART_Transmit(&huart1,Data_Head,2,10);
HAL_UART_Transmit(&huart1,CMD_RKG_XG,8,100);
if(pcang->RKG_Type == 0x01)
HAL_UART_Transmit(&huart1,Data_Head,2,10);
delay_sys_us(80);
HAL_GPIO_WritePin(GPIOB,Con01_uart1_rankonggai_Pin,GPIO_PIN_SET);//
if(prkg[CMD_RKG_XG[0]-0x40].RTData_Num > RT_ERRORCNT)
{
prkg[CMD_RKG_XG[0]-0x40].RTData_Num = RT_ERRORCNT;
prkg[CMD_RKG_XG[0]-0x40].RKXG_ErrorCnt = RT_ERRORCNT;
}
else
prkg[CMD_RKG_XG[0]-0x40].RTData_Num++; //每个传感器发送帧累加
if(CMD_RKG_XG[0] - 0x41 < rkgaddr_max -1)
CMD_RKG_XG[0]++;
else
CMD_RKG_XG[0] = 0x41;
}
else
i001 = 6;
}
if(i001==6) //发送磁致伸缩液位计命令轮询 邵磊明增加
{
if(pcang->Level == 0) //没有液位传感器
{
i001=9;
}
else if(pcang->Level == 1) //磁致伸缩传感器轮询 邵磊明增加
{
ModbusCRC = LIB_CRC_MODBUS(CMD_GetTempAndYewei,6);
CMD_GetTempAndYewei[6] = ModbusCRC>>8;
CMD_GetTempAndYewei[7] = ModbusCRC&0xff;
HAL_GPIO_WritePin(GPIOB,Con01_uart1_rankonggai_Pin,GPIO_PIN_RESET);//
delay_sys_us(80);
//HAL_UART_Transmit(&huart1,CMD_GetTempAndYewei,8,100);
//delay_sys_us(80);
HAL_UART_Transmit_IT(&huart1,CMD_GetTempAndYewei,8);
while (huart1.gState == HAL_UART_STATE_BUSY_TX)
{
osDelay(1);
}
HAL_GPIO_WritePin(GPIOB,Con01_uart1_rankonggai_Pin,GPIO_PIN_SET);//
/*if(plevel[CMD_GetTempAndYewei[0]-0x50].RTData_Num > RT_ERRORCNT)
{
plevel[CMD_GetTempAndYewei[0]-0x50].RTData_Num = RT_ERRORCNT;
plevel[CMD_GetTempAndYewei[0]-0x50].Level_ErrorCnt = RT_ERRORCNT;
}
else*/
plevel[CMD_GetTempAndYewei[0]-0x50].RTData_Num++; //每个传感器发送帧累加 基准角度为0x30
if(CMD_GetTempAndYewei[0]-0x50 < leveladdr_max)
CMD_GetTempAndYewei[0]++;
else
CMD_GetTempAndYewei[0] = 0x51;
}
else if(pcang->Level == 2) //雷达液位传感器命令轮询 20210818邵增加
{
ModbusCRC = LIB_CRC_MODBUS(CMD_LDYW,6);
CMD_LDYW[6] = ModbusCRC>>8;
CMD_LDYW[7] = ModbusCRC&0xff;
HAL_GPIO_WritePin(GPIOB,Con01_uart1_rankonggai_Pin,GPIO_PIN_RESET);//
delay_sys_us(80);
//HAL_UART_Transmit(&huart1,CMD_LDYW,8,100);
//delay_sys_us(80);
HAL_UART_Transmit_IT(&huart1, CMD_LDYW, 8);
while (huart1.gState == HAL_UART_STATE_BUSY_TX)
{
osDelay(1);
}
HAL_GPIO_WritePin(GPIOB, Con01_uart1_rankonggai_Pin, GPIO_PIN_SET); //
/*if (prkg[CMD_RKG[0] - 0x50].RTData_Num > RT_ERRORCNT) //每个传感器每发送一帧 基准角度为0x30
{
plevel[CMD_RKG[0] - 0x50].RTData_Num = RT_ERRORCNT;
plevel[CMD_RKG[0] - 0x50].Level_ErrorCnt = RT_ERRORCNT;
}
else*/
plevel[CMD_LDYW[0] - 0x50].RTData_Num++;
if (CMD_LDYW[0] - 0x50 < leveladdr_max)
CMD_LDYW[0]++;
else
CMD_LDYW[0] = 0x51;
}
else
i001=9;
}
if(i001==9) //发送华天三点式温度传感器命令轮询 邵磊明增加
{
if(pcang->Temperture != 0)
{
// taskENTER_CRITICAL();
ModbusCRC = LIB_CRC_MODBUS(CMD_GetTempHuaTian,6);
CMD_GetTempHuaTian[6] = ModbusCRC>>8;
CMD_GetTempHuaTian[7] = ModbusCRC&0xff;
HAL_GPIO_WritePin(GPIOB,Con01_uart1_rankonggai_Pin,GPIO_PIN_RESET);//
delay_sys_us(80);
HAL_UART_Transmit_IT(&huart1,CMD_GetTempHuaTian,8);
while (huart1.gState == HAL_UART_STATE_BUSY_TX)
{
osDelay(1);
}
//HAL_UART_Transmit(&huart1,CMD_GetTempHuaTian,8,100);
//delay_sys_us(80);
HAL_GPIO_WritePin(GPIOB,Con01_uart1_rankonggai_Pin,GPIO_PIN_SET);//
// taskEXIT_CRITICAL();
#if 0
if(ptem[CMD_GetTempHuaTian[0] - 0x60].RTData_Num > RT_ERRORCNT) //每个传感器每发送一帧 基准角度为0x30
{
ptem[CMD_GetTempHuaTian[0] - 0x60].RTData_Num = RT_ERRORCNT;
ptem[CMD_GetTempHuaTian[0] - 0x60].TEM_ErrorCnt = RT_ERRORCNT;
}
else
#endif
{
ptem[CMD_GetTempHuaTian[0] - 0x60].RTData_Num++;
}
if(CMD_GetTempHuaTian[0] - 0x60 < temaddr_max)
CMD_GetTempHuaTian[0] = CMD_GetTempHuaTian[0]+1;
else
CMD_GetTempHuaTian[0] = 0x61;
}
else
{
i001=0x0;
continue;
}
}
}
else //平台通过卸油阀总线直接操作传感器
{
if(i002 == 3)
{
extern uint16_t Uart_len_TouChuan;
HAL_GPIO_WritePin(GPIOB,Con01_uart1_rankonggai_Pin,GPIO_PIN_RESET);//
delay_sys_us(80);
#if 0
if((RKG_TxBuf[0] == 0x0D)&&(RKG_TxBuf[1] == 0x0A))
HAL_UART_Transmit(&huart1,RKG_TxBuf,12,100);
else
HAL_UART_Transmit(&huart1,RKG_TxBuf,8,100);
delay_sys_us(80);
#else
HAL_UART_Transmit_IT(&huart1,RKG_TxBuf,Uart_len_TouChuan);
while (huart1.gState == HAL_UART_STATE_BUSY_TX)
{
osDelay(1);
}
#endif
HAL_GPIO_WritePin(GPIOB,Con01_uart1_rankonggai_Pin,GPIO_PIN_SET);//
flagU1Rx=0;
}
i002++;
if(((flagU1Rx==1) && (i002 > 3)) || i002>10)
{
pkzq->USE_RKG = 0;
i002 = 0;
continue;
}
}
//来自UART1,即人孔盖总线的命令 电路板上标志位人孔盖
if(flagU1Rx==1)
{
flagU1Rx = 0;
receive_error = 0;
rx_len = USART1_RX_BUF002[2];
ModbusCRC = USART1_RX_BUF002[(3+rx_len)]<<8;
ModbusCRC |= USART1_RX_BUF002[(3+rx_len+1)];
if((USART1_RX_BUF002[head+0] >= 0x30 && USART1_RX_BUF002[head+0] <= 0x3F) || (USART1_RX_BUF002[head+0] >= 0x1 && USART1_RX_BUF002[head+0] <= 0x10)) //人孔大盖数据 地址0x30为基准传感器
{
if(USART1_RX_BUF002[head+1]!=0x03&&USART1_RX_BUF002[head+1]!=0x06) //校验读写属性
{
receive_error = 1;
}
else if(USART1_RX_BUF002[head+2] != 0x04) //校验数据长度
{
receive_error = 1;
}
else if(ModbusCRC != LIB_CRC_MODBUS(USART1_RX_BUF002,7)) //校验CRC
{
receive_error = 1;
}
// if((pcang->RKG_Type == 0)&&(USART1_RX_BUF002[head]>=0x30)&&(USART1_RX_BUF002[head] <=0x4F))
RKG_angle = (USART1_RX_BUF002[head+4]<<8)|USART1_RX_BUF002[head+3];
// else
// RKG_angle = (USART1_RX_BUF002[head+3]<<8)|USART1_RX_BUF002[head+4];
if((USART1_RX_BUF002[head+1] == 0x03)&&(receive_error == 0)) //读取数据返回
{//童赟 磁电编码 磁编码 人孔盖
if(USART1_RX_BUF002[head]==1)
{
prkg[0].RKDG_ErrorCnt = 0;
prkg[0].RKDG_Error=0;
}
else
{
prkg[i003].RKDG_ErrorCnt = 0;
prkg[i003].RKDG_Error=0;
}
if(USART1_RX_BUF002[head]==1)
{
AGL_AddNewData(RKG_angle,0);
}
else
{
AGL_AddNewData(RKG_angle,i003);
}
#if 0
//邵磊明修改 20211027 从rkg.c剪切到此处
if(psATsk3[i003].uiDG < 0 ||psATsk3[USART1_RX_BUF002[head]-0x30].uiDG >= 27000)//角度
{
prkg[USART1_RX_BUF002[head]-0x30].RKDG_ErrorCnt++;
}
#endif
// if( - psATsk3[USART1_RX_BUF002[head]-0x30].uiDG > prkg->RKG_Threshold || psATsk3[USART1_RX_BUF002[head]-0x30].uiDG > prkg->RKG_Threshold)
// prkg[USART1_RX_BUF002[head]-0x30].RKDG_StateCnt++;
// else
// prkg[USART1_RX_BUF002[head]-0x30].RKDG_StateCnt = 0;
if(pcang->RKG_Type == 0)
{
AGL_CalcDeltaAll(USART1_RX_BUF002[head],0);
}
#if 0 //倾角大盖计算
if(rkdg_cnt < RKG_BUF_DEP)
{
if(USART1_RX_BUF002[head] == 0x30)
{
prkg[USART1_RX_BUF002[head] - 0x30].RKG_JZData[rkdg_cnt] = RKG_angle;
}
else
{
prkg[USART1_RX_BUF002[head] - 0x30].RKG_DGData[rkdg_cnt] = RKG_angle;
rkdg_cnt++;
}
}
if(rkdg_cnt == RKG_BUF_DEP)
{
rkdg_cnt = 0;
}
#endif
//李伟修改 20211027 从rkg.c剪切到此处;开始
if (USART1_RX_BUF002[head] != 1)
{
if (psATsk3[i003].uiDG >= 0 || psATsk3[i003].uiDG <= 27000) //角度
{
if (-psATsk3[i003].uiDG > prkg->RKG_Threshold || psATsk3[i003].uiDG > prkg->RKG_Threshold)
prkg[i003].RKDG_StateCnt++;
else
prkg[i003].RKDG_StateCnt = 0;
if (prkg[i003].RKDG_StateCnt >= prkg[i003].RKG_StateKeepNum)
{
// RisingEdge++;
prkg[i003].RKDG_StateCnt = prkg[i003].RKG_StateKeepNum;
prkg[i003].RKDG_State = 1;
}
else
{
prkg[i003].RKDG_State = 0;
}
}
}
//李伟修改 20211027 从rkg.c剪切到此处;开始
i001 = 3;
continue;
}
}
else if(USART1_RX_BUF002[head+0] >= 0x40 && USART1_RX_BUF002[head+0] <= 0x4F) //人孔小盖数据 地址0x30为基准传感器
{
prkg[USART1_RX_BUF002[head] - 0x30].RKXG_ErrorCnt = 0;
prkg[USART1_RX_BUF002[head+0]-0x40].RTData_Num = 1;
if(USART1_RX_BUF002[head+1]!=0x03&&USART1_RX_BUF002[head+1]!=0x06) //校验读写属性
{
receive_error = 1;
}
else if(USART1_RX_BUF002[head+2] != 0x04) //校验数据长度
{
receive_error = 1;
}
else if(ModbusCRC != LIB_CRC_MODBUS(USART1_RX_BUF002,7)) //校验CRC
{
receive_error = 1;
}
if((USART1_RX_BUF002[head+1] == 0x03)&&(receive_error == 0)) //读取数据返回
{
AGL_AddNewData((USART1_RX_BUF002[head+3]<<8)|USART1_RX_BUF002[head+4],USART1_RX_BUF002[head]);
if(rkxg_cnt < RKG_BUF_DEP)
{
prkg[USART1_RX_BUF002[head] - 0x40].RKG_XGData[rkxg_cnt] = USART1_RX_BUF002[head+4]<<8;
prkg[USART1_RX_BUF002[head] - 0x40].RKG_XGData[rkxg_cnt] |= USART1_RX_BUF002[head+3];
rkxg_cnt++;
}
if(rkxg_cnt == RKG_BUF_DEP)
{
rkxg_cnt = 0;
}
}
else if((USART1_RX_BUF002[head+1] == 0x06)&&(receive_error == 0)) //写入数据返回
{
}
i001 = 6;
continue;
}
else if(USART1_RX_BUF002[0] >= 0x50 && USART1_RX_BUF002[0] <= 0x5F) //液位计数据 邵磊明增加
{
if(pcang->Level == 1) //磁致伸缩传感器接收数据 邵磊明增加
{
plevel[USART1_RX_BUF002[0]-0x50].RTData_Num = 1;//液位计信息数量
plevel[USART1_RX_BUF002[0]-0x50].Level_ErrorCnt = 0;
if(USART1_RX_BUF002[1]!=0x04) //校验功能码USART1_RX_BUF002[1]!=0x04&&..
{
receive_error = 1;
}
else if(USART1_RX_BUF002[2] != 0x20) //校验数据长度
{
receive_error = 1;
}
else if(ModbusCRC != LIB_CRC_MODBUS(USART1_RX_BUF002,35)) //校验CRC
{
receive_error = 1;
}
if((USART1_RX_BUF002[head+1] == 0x04)&&(receive_error == 0)) //读取返回雷达数据 slm
{
hex_to_float.arr[0] = USART1_RX_BUF002[5];
hex_to_float.arr[1] = USART1_RX_BUF002[6];
hex_to_float.arr[2] = USART1_RX_BUF002[3];
hex_to_float.arr[3] = USART1_RX_BUF002[4];
plevel[USART1_RX_BUF002[head]-0x50].Level_Data = hex_to_float.QDGH_data_temp;
hex_to_float.arr[0] = USART1_RX_BUF002[13];
hex_to_float.arr[1] = USART1_RX_BUF002[14];
hex_to_float.arr[2] = USART1_RX_BUF002[11];
hex_to_float.arr[3] = USART1_RX_BUF002[12];
plevel[USART1_RX_BUF002[head]-0x50].Avr_temp = hex_to_float.QDGH_data_temp;
hex_to_float.arr[0] = USART1_RX_BUF002[17];
hex_to_float.arr[1] = USART1_RX_BUF002[18];
hex_to_float.arr[2] = USART1_RX_BUF002[15];
hex_to_float.arr[3] = USART1_RX_BUF002[16];
plevel[USART1_RX_BUF002[head]-0x50].Avr_temp = hex_to_float.QDGH_data_temp;
hex_to_float.arr[0] = USART1_RX_BUF002[21];
hex_to_float.arr[1] = USART1_RX_BUF002[22];
hex_to_float.arr[2] = USART1_RX_BUF002[19];
hex_to_float.arr[3] = USART1_RX_BUF002[20];
plevel[USART1_RX_BUF002[head]-0x50].Bdot_temp = hex_to_float.QDGH_data_temp;
hex_to_float.arr[0] = USART1_RX_BUF002[25];
hex_to_float.arr[1] = USART1_RX_BUF002[26];
hex_to_float.arr[2] = USART1_RX_BUF002[23];
hex_to_float.arr[3] = USART1_RX_BUF002[24];
plevel[USART1_RX_BUF002[head]-0x50].Cdot_temp = hex_to_float.QDGH_data_temp;
}
else if((USART1_RX_BUF002[head+1] == 0x06)&&(receive_error == 0)) //写入数据返回
{
}
}
else if(pcang->Level == 2) //雷达液位传感器接收数据 邵磊明增加
{
plevel[USART1_RX_BUF002[0]-0x50].RTData_Num = 1;//液位计信息数量
plevel[USART1_RX_BUF002[0]-0x50].Level_ErrorCnt = 0;
if(USART1_RX_BUF002[1]!=0x04) //校验功能码USART1_RX_BUF002[1]!=0x04&&..
{
receive_error = 1;
}
else if(USART1_RX_BUF002[2] != 0x04) //校验数据长度
{
receive_error = 1;
}
else if(ModbusCRC != LIB_CRC_MODBUS(USART1_RX_BUF002,7)) //校验CRC
{
receive_error = 1;
}
pcang->CRC1 = LIB_CRC_MODBUS(USART1_RX_BUF002,7);
if((USART1_RX_BUF002[head+1] == 0x04)&&(receive_error == 0)) //读取返回雷达数据 slm
{//液位计数据 液位仪数据
hex_to_float.arr[0] = USART1_RX_BUF002[4];
hex_to_float.arr[1] = USART1_RX_BUF002[3];
hex_to_float.arr[2] = USART1_RX_BUF002[6];
hex_to_float.arr[3] = USART1_RX_BUF002[5];
plevel[USART1_RX_BUF002[head]-0x50].Level_Data = hex_to_float.QDGH_data_temp;
}
else if((USART1_RX_BUF002[head+1] == 0x06)&&(receive_error == 0)) //写入数据返回
{
}
}
i001 = 9;
continue;
}
else if(USART1_RX_BUF002[0] >=0x60 && USART1_RX_BUF002[0] <= 0x6f) //华天三点式温度传感器接收数据 邵磊明增加
{
ptem[CMD_GetTempHuaTian[0] - 0x60].RTData_Num = 1;//三点测温
ptem[CMD_GetTempHuaTian[0] - 0x60].TEM_ErrorCnt = 0;
if(USART1_RX_BUF002[1]!=0x03&&USART1_RX_BUF002[1]!=0x06) //校验读写属性
{
receive_error = 1;
}
else if(USART1_RX_BUF002[2] != 0x02) //校验数据长度
{
receive_error = 1;
}
else if(ModbusCRC != LIB_CRC_MODBUS(USART1_RX_BUF002,5)) //校验CRC
{
receive_error = 1;
}
else if((USART1_RX_BUF002[head+1] == 0x03)&&(receive_error == 0))
{
if(pcang->Temperture==1) //1点
{
ptem[USART1_RX_BUF002[head]-0x60].TEM_HData[1] = USART1_RX_BUF002[3]<<8|USART1_RX_BUF002[4];
ptem[USART1_RX_BUF002[head]-0x60].TEM_MData[1] = USART1_RX_BUF002[3]<<8|USART1_RX_BUF002[4];
ptem[USART1_RX_BUF002[head]-0x60].TEM_LData[1] = USART1_RX_BUF002[3]<<8|USART1_RX_BUF002[4];
}
else if(pcang->Temperture==3) //1点
{
i = USART1_RX_BUF002[head]-0x61;
switch (i%3)
{
case 0:
ptem[(i/3)+1].TEM_HData[1] = USART1_RX_BUF002[3]<<8|USART1_RX_BUF002[4];
break;
case 1:
ptem[(i/3)+1].TEM_MData[1] = USART1_RX_BUF002[3]<<8|USART1_RX_BUF002[4];
break;
case 2:
ptem[(i/3)+1].TEM_LData[1] = USART1_RX_BUF002[3]<<8|USART1_RX_BUF002[4];
break;
default:
break;
}
}
#if 0
switch(USART1_RX_BUF002[head])//pcang->Temperture&0xFF
{
case 0x61:
ptem[USART1_RX_BUF002[head]-0x60].TEM_HData[1] = USART1_RX_BUF002[3]<<8|USART1_RX_BUF002[4];
break;
case 0x62:
ptem[USART1_RX_BUF002[head]-0x61].TEM_MData[1] = USART1_RX_BUF002[3]<<8|USART1_RX_BUF002[4];
break;
case 0x63:
ptem[USART1_RX_BUF002[head]-0x62].TEM_LData[1] = USART1_RX_BUF002[3]<<8|USART1_RX_BUF002[4];
break;
case 0x64:
ptem[USART1_RX_BUF002[head]-0x62].TEM_HData[1] = USART1_RX_BUF002[3]<<8|USART1_RX_BUF002[4];
break;
case 0x65:
ptem[USART1_RX_BUF002[head]-0x63].TEM_MData[1] = USART1_RX_BUF002[3]<<8|USART1_RX_BUF002[4];
break;
case 0x66:
ptem[USART1_RX_BUF002[head]-0x64].TEM_LData[1] = USART1_RX_BUF002[3]<<8|USART1_RX_BUF002[4];
break;
default:
break;
}
#endif
}
i001 = 0;
continue;
}
else if(0) //暂未使用
{
}
else if(0) //暂未使用
{
}
}
else
{
if (i001 == 2)
{
if(pcang->RKG_Type == 0)
{
if(CMD_RKG[0] == 0x1)
{
i = 0;
}
else
{
i = i003;
}
}
else
{
if(CMD_RKG[0] == 0x31)
{
i = rkgaddr_max;
}
else
{
i = CMD_RKG[0] - 0x31;
}
}
prkg[i].RKDG_ErrorCnt++;
if (prkg[i].RKDG_ErrorCnt > pcang->sensorBusMaxReTry)
{
prkg[i].RKDG_ErrorCnt = pcang->sensorBusMaxReTry + 1;
prkg[i].RKDG_Error = 1;
}
}
if (i001 == 8) //液位错误
{
if(pcang->Level == 1)
{
i = CMD_GetTempAndYewei[0];
}
else if(pcang->Level == 2)
{
i = CMD_LDYW[0];
}
if(pcang->Level)
{
if(i==0x51)
{
i = leveladdr_max;
}
else
{
i = i - 0x51;
}
plevel[i].Level_ErrorCnt++;
}
}
}
if(i001<0x0c)
i001++;
else
i001 = 0;
osDelay(40);
}
/* USER CODE END StartTask03 */
}
/* USER CODE BEGIN Header_StartTask04 */
/**
* @brief Function implementing the myTask04 thread.
* @param argument: Not used
* @retval None
*/
#include "Data_deal.h"
uint8_t USART2_RX_BUF003[128];
uint8_t F_STATE[70] = {0};
uint8_t ptxCang01Temp[150];
uint32_t KZQ_RTerror = 0;
/* USER CODE END Header_StartTask04 */
void StartTask04(void *argument) //控制器数据处理 uart2
{
/* USER CODE BEGIN StartTask04 */
/* Infinite loop */
uint8_t* ptx = CMD_KZQ;
uint16_t ModbusCRC = 0,SetSuccess = 0,ModbusCRC1 = 0,SetSuccess1 = 0,SetSuccess2=0,SetSuccess3=0;
static uint16_t i = 0;
int i000;
uint8_t* send_ptr;
uint16_t send_len;
uint32_t tmpU32;
KZQ_Inf* pkzq = &kzq_inf;
extern uint8_t USART2_RX_BUF002[Uart2_BUF_SIZE];
extern int data_lengthU2;
extern int flagU2Rx;
extern uint8_t USART2_RX_BUF002_print[Uart2_BUF_SIZE];
/* Infinite loop */
for(;;)
{
osDelay(50); //以ms为单位
// HAL_GPIO_TogglePin(GPIOA,GPIO_PIN_0);
HAL_GPIO_TogglePin(WDI_sp706_kanmemgou_GPIO_Port, WDI_sp706_kanmemgou_Pin);
if (flagU2Rx == 1)
{
flagU2Rx = 0;
if ((rx1_len > 300) || ((USART2_RX_BUF002[0] == 0xa5) && (USART2_RX_BUF002[1] == 0x5a)))
{
tmpU32 = (USART2_RX_BUF002[0] << 24) | (USART2_RX_BUF002[1] << 16) | (USART2_RX_BUF002[2] << 8) | (USART2_RX_BUF002[3]);
if (StartBytes_IAP == tmpU32)
{
Process_CMD_IAP_Update();
continue;
}
}
// KZQ_RTerror = 0;
// ASC转换为16进制,收到数据为:3901开头的数据总长度131字节
if ((USART2_RX_BUF002[0] == 0x3A) && (USART2_RX_BUF002[1] == 0x33) && (USART2_RX_BUF002[2] == 0x39) && (USART2_RX_BUF002[3] == 0x30)) //判断帧头
{
if (data_lengthU2 != 131)
{
++KZQ_RTerror;
continue;
}
for (i000 = 0; i000 < (data_lengthU2 - 3) / 2; i000++)
{
T2C_RemoteCaliDat001.PayLoadData[i000] = MODBUS_ASCII_AsciiToHex(USART2_RX_BUF002 + 1 + 0 + i000 * 2);
USART2_RX_BUF003[i000] = MODBUS_ASCII_AsciiToHex(USART2_RX_BUF002 + 1 + 0 + i000 * 2);
}
//解析后的数据拷贝过来
memcpy(USART2_RX_BUF002, USART2_RX_BUF003, (data_lengthU2 - 3) / 2);
data_lengthU2 = (data_lengthU2 - 3) / 2;
}
if (data_lengthU2 < 5)
continue;
ModbusCRC = USART2_RX_BUF002[data_lengthU2 - 1] << 8;
ModbusCRC |= USART2_RX_BUF002[data_lengthU2 - 2];
ModbusCRC1 = LIB_CRC_MODBUS(USART2_RX_BUF002, data_lengthU2 - 2);
if ((USART2_RX_BUF002[0] != 0x39) && (USART2_RX_BUF002[1] <= 0x01) && (USART2_RX_BUF002[2] <= 0x95) && (USART2_RX_BUF002[3] <= 0x50)) //判断帧头
{
pkzq->KZQ_Error++;
KZQ_RTerror = 1;
}
else if (USART2_RX_BUF002[5] != 0x01) //校验地址
{
pkzq->KZQ_Error++;
KZQ_RTerror = 1;
}
else if ((USART2_RX_BUF002[7] != 0x03) && (USART2_RX_BUF002[7] != 0x06)) //校验数据长度
{
pkzq->KZQ_Error++;
KZQ_RTerror = 1;
}
/*else if(ModbusCRC != ModbusCRC1) //校验CRC
{
pkzq->KZQ_Error++;
KZQ_RTerror = 1;
}*/
else
{
pkzq->KZQ_Error = 0;
KZQ_RTerror = 0;
for (i = 0; i < 64; i++)
pkzq->data_buf[i] = USART2_RX_BUF002[i];
for(i = 0;i < 16;i++)
ptx[i] = USART2_RX_BUF002[i];
}
if(KZQ_RTerror == 0)
{
pkzq->sensor_reg = USART2_RX_BUF002[8];
pkzq->sensor_reg = pkzq->sensor_reg<<8;
pkzq->sensor_reg |= USART2_RX_BUF002[9];
switch(pkzq->sensor_reg)
{
case 0x10: RstCPU(); //复位
break;
case 0x11:
break;
case 0x12:
break;
case 0x13: Sen_CangState_old(F_STATE); //老协议 传输阀门状态
break;
case 0x20: SetSuccess = Read_CangState(ptx); //读取仓状态
break;
case 0x21:
break;
case 0x22:
break;
case 0x23:
break;
case 0x24:
break;
case 0x25:
break;
case 0x26:
break;
case 0x27: SetSuccess = Read_CangSensorData(ptx); //读取仓传感器
break;
case 0x28:
break;
case 0x29:
break;
case 0x40: SetSuccess = Angle_SetZero(ptx); //姿态传感器置零
for(i = 0;i < 64;i++)
ptx[i] = USART2_RX_BUF002[i];
break;
case 0x41:
break;
case 0x42:
break;
case 0x43:
break;
case 0x50: SetSuccess = XYF_SetOFF(ptx); //远程卸油阀标定关 slm
for(i = 0;i < 64;i++)
ptx[i] = USART2_RX_BUF002[i];
break;
case 0x51: SetSuccess = XYF_SetThreshold(ptx); //设置卸油阀传感器开关门限
break;
case 0x52: SetSuccess = RKG_SetZero(ptx); //人孔盖传感器置零
for(i = 0;i < 64;i++)
ptx[i] = USART2_RX_BUF002[i];
break;
case 0x53:
break;
case 0x54:
break;
case 0x55: SetSuccess = Read_Sensor(ptx); // 远程读取传感器数据 slm
break;
case 0x70:
break;
case 0x71: SetSuccess = BGY_SetThreshold(ptx); //设置壁挂油门限
break;
case 0x72: SetSuccess = RKG_SetThreshold(ptx); //设置人孔盖开关门限
break;
case 0x73: SetSuccess = Sensor_SetJudgefNum(ptx); //设置开关判断次数
break;
case 0x74: SetSuccess = CJQ_SetConfig(ptx); //设置采集器参数
Flash_Change = 1;
break;
case 0x75: SetSuccess = RKG_SetTypeNum(ptx); //设置人孔盖种类、数量
Flash_Change = 1;
break;
case 0x76: SetSuccess = XYF_SetTypeNum(ptx); //设置卸油阀种类、数量
Flash_Change = 1;
break;
case 0x77: SetSuccess = HDF_SetTypeNum(ptx); //设置海底阀种类、数量
Flash_Change = 1;
break;
case 0x78: SetSuccess = Level_SetType(ptx); //设置液位计种类
Flash_Change = 1;
break;
case 0x79: SetSuccess = Angle_SetType(ptx); //设置姿态传感器种类
Flash_Change = 1;
break;
case 0x7a: SetSuccess = Tem_SetType(ptx); //设置温度传感器种类
// Flash_Change = 1;
break;
case 0x7b: HDF_Set_CloseVal(ptx); //设置智能海底阀放大倍数
Flash_Change = 1;
break;
case 0x7c: HDF_Set_Threshold(ptx); //设置智能海底阀放大倍数
Flash_Change = 1;
break;
case 0x7d: HDF_Set_Gain(ptx); //设置智能海底阀放大倍数
Flash_Change = 1;
break;
case 0x7e: HDF_Reset(ptx); //设置智能海底阀放大倍数
Flash_Change = 1;
break;
case 0x80: SetSuccess = RW_SensorBusMaxRetry(ptx); //传感器总线重试最大值来获取异常
break;
case 0x017e: TOUCHUAN_UART_NUM(ptx); //设置智能海底阀放大倍数
Flash_Change = 1;
break;
case 0x0180: SetSuccess = GRB_SET_Table(ptx); //罐容表配置 邵磊明增加
Flash_Change = 1;
break;
case 0x0190: SetSuccess = Level_SetCalvalue(ptx); //设置液位计零点 邵磊明增加
Flash_Change = 1;
case 0x0121: //SetSuccess = Level_SetCalvalue(ptx); //设置液位计种类
// Flash_Change = 1;
break;
case 0x0122://SetSuccess = Level_SetCalvalue(ptx); //设置液位计种类
// Flash_Change = 1;
break;
case 0x0220:
SetSuccess=Read_SoftVersion(ptx);
break;
case 0x1121:
SetSuccess1 = Read_CangSensorData_1to4(ptx); //读仓1-4传感器
break;
case 0x1193:
SetSuccess2 = Read_CangSensorData_1(ptx); //读仓1传感器
break;
case 0x1194:
SetSuccess2 = Read_CangSensorData_2(ptx); //读仓2传感器
break;
case 0x1195:
SetSuccess2 = Read_CangSensorData_3(ptx); //读仓3传感器
break;
case 0x1196:
SetSuccess2 = Read_CangSensorData_4(ptx); //读仓4传感器
break;
case 0x1197:
SetSuccess2 = Read_CangSensorData_5(ptx); //读仓5传感器
break;
case 0x1198:
SetSuccess2 = Read_CangSensorData_6(ptx); //读仓6传感器
break;
case 0x1199:
SetSuccess2 = Read_CangSensorData_7(ptx); //读仓7传感器
break;
case 0x119a:
SetSuccess2 = Read_CangSensorData_8(ptx); //读仓8传感器
break;
case 0x119b:
SetSuccess3 = Read_ZhencheSensorData1(ptx); //读仓1-4传感器
break;
default:
break;
}
send_len=0;
if(pkzq->sensor_reg == 0x13)
{
send_ptr = F_STATE;
send_len = 62;
}
else if(SetSuccess2)
{
SetSuccess2=0;
send_ptr = ptx;
send_len = 148;
}
else if(SetSuccess3)
{
SetSuccess3=0;
send_ptr = ptx;
send_len = 96;
}
else if(SetSuccess1)
{
SetSuccess1=0;
ptx[232] = 0x00;
ptx[233] = 0x00;
send_ptr = ptx;
send_len = 234;
}
else if(SetSuccess)
{
ptx[60] = 0x00;
ptx[61] = 0x00;
send_ptr = ptx;
send_len = 62;
}
else
{
ptx[60] = 0xFF;
ptx[61] = 0xFF;
send_ptr = ptx;
send_len = 62;
}
SetSuccess = 0;
if(send_len)
{
ModbusCRC = LIB_CRC_MODBUS(send_ptr,send_len);
send_ptr[send_len] = ModbusCRC>>8;
send_ptr[send_len+1] = ModbusCRC&0xff;
HAL_GPIO_WritePin(GPIOA,con03_uart2_kongzhiqi_Pin,GPIO_PIN_RESET);//
delay_sys_us(80);
HAL_UART_Transmit_IT(&huart2,send_ptr,send_len+2);
while (huart2.gState == HAL_UART_STATE_BUSY_TX)
{
osDelay(1);
}
delay_sys_us(80);
HAL_GPIO_WritePin(GPIOA,con03_uart2_kongzhiqi_Pin,GPIO_PIN_SET);//
}
}
flagU2Rx = 0;
}
}
/* USER CODE END StartTask04 */
}
/* USER CODE BEGIN Header_StartTask05 */
/**
* @brief Function implementing the myTask05 thread.
* @param argument: Not used
* @retval None
*/
/* USER CODE END Header_StartTask05 */
#include"level.h"
void StartTask05(void *argument)
{
/* USER CODE BEGIN StartTask05 */
/* Infinite loop */
Level_Inf *plevel = level_inf;
Cang_Inf *pcang = &cang_inf;
uint8_t i;
float v000;
uint16_t *VolArrayTsk05 = Volume_1cang;
const uint16_t *HArrayTsk05 = H_1cang;
for (;;)
{
HAL_GPIO_TogglePin(WDI_sp706_kanmemgou_GPIO_Port, WDI_sp706_kanmemgou_Pin);
AGL_JudgeState();
for (i = 0; i < pcang->Cang_Num+1; i++)
{
// Value_Manage(i);
// for(uint8_t i = 0;i < 5;i++)
{
switch (i)
{
case 0:
VolArrayTsk05 = Volume_1cang;
HArrayTsk05 = H_1cang;
break;
case 1:
VolArrayTsk05 = Volume_1cang;
HArrayTsk05 = H_1cang;
break;
case 2:
VolArrayTsk05 = Volume_2cang;
HArrayTsk05 = H_2cang;
break;
case 3:
VolArrayTsk05 = Volume_3cang;
HArrayTsk05 = H_3cang;
break;
case 4:
VolArrayTsk05 = Volume_4cang;
HArrayTsk05 = H_4cang;
break;
default:
VolArrayTsk05 = Volume_4cang;
HArrayTsk05 = H_4cang;
break;
}
v000 = Calc_Vol(plevel[i].Level_Data, VolArrayTsk05, HArrayTsk05, i);
plevel[i].Volume_Data = v000;
DF_State(i);
// BGY_state(i);
osDelay(100);
}
}
}
/* USER CODE END StartTask05 */
}
/* USER CODE BEGIN Header_StartTask06 */
/**
* @brief Function implementing the myTask06 thread.
* @param argument: Not used
* @retval None
*/
/* USER CODE END Header_StartTask06 */
void StartTask06(void *argument)
{
/* USER CODE BEGIN StartTask06 */
/* Infinite loop */
for(;;)
{
osDelay(1);
}
/* USER CODE END StartTask06 */
}
/* USER CODE BEGIN Header_StartTask07 */
/**
* @brief Function implementing the myTask07 thread.
* @param argument: Not used
* @retval None
*/
/* USER CODE END Header_StartTask07 */
void StartTask07(void *argument)
{
/* USER CODE BEGIN StartTask07 */
/* Infinite loop */
for(;;)
{
osDelay(1);
}
/* USER CODE END StartTask07 */
}
/* USER CODE BEGIN Header_StartTask08 */
/**
* @brief Function implementing the myTask08 thread.
* @param argument: Not used
* @retval None
*/
/* USER CODE END Header_StartTask08 */
void StartTask08(void *argument)
{
/* USER CODE BEGIN StartTask08 */
/* Infinite loop */
for(;;)
{
osDelay(1);
}
/* USER CODE END StartTask08 */
}
/* USER CODE BEGIN Header_StartTask09 */
/**
* @brief Function implementing the myTask09 thread.
* @param argument: Not used
* @retval None
*/
/* USER CODE END Header_StartTask09 */
void StartTask09(void *argument)
{
/* USER CODE BEGIN StartTask09 */
/* Infinite loop */
for(;;)
{
osDelay(1);
}
/* USER CODE END StartTask09 */
}
/* USER CODE BEGIN Header_StartTask10 */
/**
* @brief Function implementing the myTask10 thread.
* @param argument: Not used
* @retval None
*/
/* USER CODE END Header_StartTask10 */
void StartTask10(void *argument)
{
/* USER CODE BEGIN StartTask10 */
/* Infinite loop */
for(;;)
{
osDelay(1);
}
/* USER CODE END StartTask10 */
}
/* USER CODE BEGIN Header_StartTask11 */
/**
* @brief Function implementing the myTask11 thread.
* @param argument: Not used
* @retval None
*/
/* USER CODE END Header_StartTask11 */
void StartTask11(void *argument)
{
/* USER CODE BEGIN StartTask11 */
/* Infinite loop */
for(;;)
{
osDelay(1);
}
/* USER CODE END StartTask11 */
}
/* USER CODE BEGIN Header_StartTask12 */
/**
* @brief Function implementing the myTask12 thread.
* @param argument: Not used
* @retval None
*/
/* USER CODE END Header_StartTask12 */
void StartTask12(void *argument)
{
/* USER CODE BEGIN StartTask12 */
/* Infinite loop */
for(;;)
{
osDelay(500);
usage_Tsk12++;
HAL_GPIO_TogglePin(GPIOA,GPIO_PIN_0);
HAL_GPIO_TogglePin(WDI_sp706_kanmemgou_GPIO_Port, WDI_sp706_kanmemgou_Pin);
}
/* USER CODE END StartTask12 */
}
/* Callback01 function */
void Callback01(void *argument)
{
/* USER CODE BEGIN Callback01 */
/* USER CODE END Callback01 */
}
/* Callback02 function */
void Callback02(void *argument)
{
/* USER CODE BEGIN Callback02 */
/* USER CODE END Callback02 */
}
/* Callback03 function */
void Callback03(void *argument)
{
/* USER CODE BEGIN Callback03 */
/* USER CODE END Callback03 */
}
/* Callback04 function */
void Callback04(void *argument)
{
/* USER CODE BEGIN Callback04 */
/* USER CODE END Callback04 */
}
/* Callback05 function */
void Callback05(void *argument)
{
/* USER CODE BEGIN Callback05 */
/* USER CODE END Callback05 */
}
/* Callback06 function */
void Callback06(void *argument)
{
/* USER CODE BEGIN Callback06 */
/* USER CODE END Callback06 */
}
/* Callback07 function */
void Callback07(void *argument)
{
/* USER CODE BEGIN Callback07 */
/* USER CODE END Callback07 */
}
/* Callback08 function */
void Callback08(void *argument)
{
/* USER CODE BEGIN Callback08 */
/* USER CODE END Callback08 */
}
/* Callback09 function */
void Callback09(void *argument)
{
/* USER CODE BEGIN Callback09 */
/* USER CODE END Callback09 */
}
/* Callback010 function */
void Callback010(void *argument)
{
/* USER CODE BEGIN Callback010 */
/* USER CODE END Callback010 */
}
/**
* @brief Period elapsed callback in non blocking mode
* @note This function is called when TIM8 interrupt took place, inside
* HAL_TIM_IRQHandler(). It makes a direct call to HAL_IncTick() to increment
* a global variable "uwTick" used as application time base.
* @param htim : TIM handle
* @retval None
*/
void HAL_TIM_PeriodElapsedCallback(TIM_HandleTypeDef *htim)
{
/* USER CODE BEGIN Callback 0 */
/* USER CODE END Callback 0 */
if (htim->Instance == TIM8) {
HAL_IncTick();
}
/* USER CODE BEGIN Callback 1 */
/* USER CODE END Callback 1 */
}
/**
* @brief This function is executed in case of error occurrence.
* @retval None
*/
void Error_Handler(void)
{
/* USER CODE BEGIN Error_Handler_Debug */
/* User can add his own implementation to report the HAL error return state */
__disable_irq();
while (1)
{
}
/* USER CODE END Error_Handler_Debug */
}
#ifdef USE_FULL_ASSERT
/**
* @brief Reports the name of the source file and the source line number
* where the assert_param error has occurred.
* @param file: pointer to the source file name
* @param line: assert_param error line source number
* @retval None
*/
void assert_failed(uint8_t *file, uint32_t line)
{
/* USER CODE BEGIN 6 */
/* User can add his own implementation to report the file name and line number,
ex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */
/* USER CODE END 6 */
}
#endif /* USE_FULL_ASSERT */
/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/