/* USER CODE BEGIN Header */ /** ****************************************************************************** * @file : main.c * @brief : Main program body ****************************************************************************** * @attention * *

© Copyright (c) 2021 STMicroelectronics. * All rights reserved.

* * This software component is licensed by ST under Ultimate Liberty license * SLA0044, the "License"; You may not use this file except in compliance with * the License. You may obtain a copy of the License at: * www.st.com/SLA0044 * ****************************************************************************** */ /* USER CODE END Header */ /* Includes ------------------------------------------------------------------*/ #include "main.h" #include "cmsis_os.h" #include "FreeRTOS.h" #include "task.h" #include "timers.h" #include "event_groups.h" /* Private includes ----------------------------------------------------------*/ /* USER CODE BEGIN Includes */ #include "string.h" #include "stdio.h" #include "usart.h" #include "config.h" #include "rkg.h" #include "cang.h" #include "kzq.h" #include "level.h" #include "tem.h" #include "angle.h" #include "xyf.h" #include "hdf.h" #include "bgy.h" #include "yqhs.h" #include "iap.h" /* USER CODE END Includes */ #if 1 #define IR_ROM1 0x08000000 #else #define IR_ROM1 0x08020000 #endif /* Private typedef -----------------------------------------------------------*/ /* USER CODE BEGIN PTD */ #define ADDR_Is_In_ElecFence 0x05D0 // 1488 车是否在电子围栏内 uint8_t REST = 0; uint32_t usage_Tsk12=0; //============================================================ sT2C_RemoteCaliDat T2C_RemoteCaliDat001 = { 0x3901, 0x9551000, 0x0003, ADDR_Is_In_ElecFence,//0x0000, 0x0001, //操作的数据个数 0x55aa55aa, //保留字4字节 {1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,\ 25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44}, 0x7788,//保留字2字节 0x99aa //校验2字节 }; sT2C_RemoteCaliDat *pT2C_RemoteCaliData = &T2C_RemoteCaliDat001; /* USER CODE END PTD */ /* Private define ------------------------------------------------------------*/ /* USER CODE BEGIN PD */ #define RT_ERRORCNT 60 //串口收发数据错误上限 /* USER CODE END PD */ /* Private macro -------------------------------------------------------------*/ /* USER CODE BEGIN PM */ uint8_t CMD_KZQ[256] = {0x39,0x01,0x95,0x50,0x00,0x01,0x00,0x03, 0x00,0x00,0x00,0x00,0x95,0x05,0xaa,0xaa, 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, }; //卸油阀指令 uint8_t CMD_XYF[8] = {0x11,0x03,0x00,0x00,0x00,0x01,0x00,0x00}; uint8_t Data_Head[2] = {0x0D,0x0A}; //海底阀指令 uint8_t CMD_HDF[16] = {0x21,0x03,0x2a,0,0,0,0,0,0xaa,0xbb,0xcc,0xdd,0xee,0xdd,0xcc,0xbb}; //人孔盖指令31 03 00 02 00 02 uint8_t CMD_RKG[8] = {0x31,0x03,0x00,0x02,0x00,0x02,0x00,0x00}; uint8_t CMD_RKG_CBM[12] = {0x0D,0x0A,0x31,0x03,0x00,0x02,0x00,0x02,0x00,0x00,0x0D,0x0A}; uint8_t CMD_RKG_XG[12] = {0x41,0x03,0x00,0x02,0x00,0x02,0x00,0x00}; //油气回收 uint8_t CMD_YQHS[8] = {0xE4,0x03,0x00,0x00,0x00,0x01,0x00,0x00}; //倾角传感器读取协议 01 03 00 02 00 02 CRC uint8_t CMD_Angle_XY[] = {0x71,0x03,0x00,0x3d,0x00,0x03,0x00,0x00}; //卸尽传感器读取协议 uint8_t CMD_Biguayou[] = {0x81,0x03,0x00,0x00,0x00,0x01,0x9B,0xCA}; //uint8_t CMD_Angle_X[] = {0xE0,0x03,0x00,0x02,0x00,0x02,0x00,0x00}; //uint8_t CMD_Angle_Y[] = {0xE1,0x03,0x00,0x02,0x00,0x02,0x00,0x00}; uint8_t CMD_LDYW[8]={0x51,0x04,0x0a,0x0f,0x00,0x02};//设备地址,功能码,地址4字节 反回:设备地址,功能码,数据长度,数据4字节 uint8_t CMD_GetTempAndYewei[8]={0x51, 0x04, 00, 00, 00, 0x10, 0x03 ,0xae};//读取编号为04地址的温度传感器数据 //61-6f 03 00 04 00 01 C6 8A----读取华天传感器的第1个温度点,地址为x10;最接近电子仓的温度点 uint8_t CMD_GetTempHuaTian[8]={0x61, 0x03, 00, 04, 00, 01,0,0};//读取华天传感器的第一个温度点 //磁编码传感器读取协议 。 /* USER CODE END PM */ /* Private variables ---------------------------------------------------------*/ CRC_HandleTypeDef hcrc; DAC_HandleTypeDef hdac; DMA_HandleTypeDef hdma_dac_ch2; TIM_HandleTypeDef htim1; TIM_HandleTypeDef htim4; UART_HandleTypeDef huart5; UART_HandleTypeDef huart1; UART_HandleTypeDef huart2; UART_HandleTypeDef huart3; DMA_HandleTypeDef hdma_usart1_rx; DMA_HandleTypeDef hdma_usart1_tx; DMA_HandleTypeDef hdma_usart2_rx; DMA_HandleTypeDef hdma_usart3_rx; /* Definitions for defaultTask */ osThreadId_t defaultTaskHandle; const osThreadAttr_t defaultTask_attributes = { .name = "defaultTask", .stack_size = 128 * 4, .priority = (osPriority_t) osPriorityNormal, }; /* Definitions for myTask02 */ osThreadId_t myTask02Handle; const osThreadAttr_t myTask02_attributes = { .name = "myTask02", .stack_size = 256 * 4, .priority = (osPriority_t) osPriorityLow, }; /* Definitions for myTask03 */ osThreadId_t myTask03Handle; const osThreadAttr_t myTask03_attributes = { .name = "myTask03", .stack_size = 256 * 4, .priority = (osPriority_t) osPriorityLow, }; /* Definitions for myTask04 */ osThreadId_t myTask04Handle; const osThreadAttr_t myTask04_attributes = { .name = "myTask04", .stack_size = 256 * 4, .priority = (osPriority_t) osPriorityLow, }; /* Definitions for myTask05 */ osThreadId_t myTask05Handle; const osThreadAttr_t myTask05_attributes = { .name = "myTask05", .stack_size = 128 * 4, .priority = (osPriority_t) osPriorityLow, }; /* Definitions for myTask06 */ osThreadId_t myTask06Handle; const osThreadAttr_t myTask06_attributes = { .name = "myTask06", .stack_size = 128 * 4, .priority = (osPriority_t) osPriorityLow, }; /* Definitions for myTask07 */ osThreadId_t myTask07Handle; const osThreadAttr_t myTask07_attributes = { .name = "myTask07", .stack_size = 128 * 4, .priority = (osPriority_t) osPriorityLow, }; /* Definitions for myTask08 */ osThreadId_t myTask08Handle; const osThreadAttr_t myTask08_attributes = { .name = "myTask08", .stack_size = 128 * 4, .priority = (osPriority_t) osPriorityLow, }; /* Definitions for myTask09 */ osThreadId_t myTask09Handle; const osThreadAttr_t myTask09_attributes = { .name = "myTask09", .stack_size = 128 * 4, .priority = (osPriority_t) osPriorityLow, }; /* Definitions for myTask10 */ osThreadId_t myTask10Handle; const osThreadAttr_t myTask10_attributes = { .name = "myTask10", .stack_size = 128 * 4, .priority = (osPriority_t) osPriorityLow, }; /* Definitions for myTask11 */ osThreadId_t myTask11Handle; const osThreadAttr_t myTask11_attributes = { .name = "myTask11", .stack_size = 128 * 4, .priority = (osPriority_t) osPriorityLow, }; /* Definitions for myTask12 */ osThreadId_t myTask12Handle; const osThreadAttr_t myTask12_attributes = { .name = "myTask12", .stack_size = 128 * 4, .priority = (osPriority_t) (osPriorityLow-6), }; /* Definitions for myQueue01 */ osMessageQueueId_t myQueue01Handle; const osMessageQueueAttr_t myQueue01_attributes = { .name = "myQueue01" }; /* Definitions for myQueue02 */ osMessageQueueId_t myQueue02Handle; const osMessageQueueAttr_t myQueue02_attributes = { .name = "myQueue02" }; /* Definitions for myQueue03 */ osMessageQueueId_t myQueue03Handle; const osMessageQueueAttr_t myQueue03_attributes = { .name = "myQueue03" }; /* Definitions for myQueue04 */ osMessageQueueId_t myQueue04Handle; const osMessageQueueAttr_t myQueue04_attributes = { .name = "myQueue04" }; /* Definitions for myQueue05 */ osMessageQueueId_t myQueue05Handle; const osMessageQueueAttr_t myQueue05_attributes = { .name = "myQueue05" }; /* Definitions for myQueue06 */ osMessageQueueId_t myQueue06Handle; const osMessageQueueAttr_t myQueue06_attributes = { .name = "myQueue06" }; /* Definitions for myTimer01 */ osTimerId_t myTimer01Handle; const osTimerAttr_t myTimer01_attributes = { .name = "myTimer01" }; /* Definitions for myTimer02 */ osTimerId_t myTimer02Handle; const osTimerAttr_t myTimer02_attributes = { .name = "myTimer02" }; /* Definitions for myTimer03 */ osTimerId_t myTimer03Handle; const osTimerAttr_t myTimer03_attributes = { .name = "myTimer03" }; /* Definitions for myTimer04 */ osTimerId_t myTimer04Handle; const osTimerAttr_t myTimer04_attributes = { .name = "myTimer04" }; /* Definitions for myTimer05 */ osTimerId_t myTimer05Handle; const osTimerAttr_t myTimer05_attributes = { .name = "myTimer05" }; /* Definitions for myTimer06 */ osTimerId_t myTimer06Handle; const osTimerAttr_t myTimer06_attributes = { .name = "myTimer06" }; /* Definitions for myTimer07 */ osTimerId_t myTimer07Handle; const osTimerAttr_t myTimer07_attributes = { .name = "myTimer07" }; /* Definitions for myTimer08 */ osTimerId_t myTimer08Handle; const osTimerAttr_t myTimer08_attributes = { .name = "myTimer08" }; /* Definitions for myTimer09 */ osTimerId_t myTimer09Handle; const osTimerAttr_t myTimer09_attributes = { .name = "myTimer09" }; /* Definitions for myTimer10 */ osTimerId_t myTimer10Handle; const osTimerAttr_t myTimer10_attributes = { .name = "myTimer10" }; /* Definitions for myMutex01 */ osMutexId_t myMutex01Handle; const osMutexAttr_t myMutex01_attributes = { .name = "myMutex01" }; /* Definitions for myMutex02 */ osMutexId_t myMutex02Handle; const osMutexAttr_t myMutex02_attributes = { .name = "myMutex02" }; /* Definitions for myMutex03 */ osMutexId_t myMutex03Handle; const osMutexAttr_t myMutex03_attributes = { .name = "myMutex03" }; /* Definitions for myMutex04 */ osMutexId_t myMutex04Handle; const osMutexAttr_t myMutex04_attributes = { .name = "myMutex04" }; /* Definitions for myMutex05 */ osMutexId_t myMutex05Handle; const osMutexAttr_t myMutex05_attributes = { .name = "myMutex05" }; /* Definitions for myMutex06 */ osMutexId_t myMutex06Handle; const osMutexAttr_t myMutex06_attributes = { .name = "myMutex06" }; /* Definitions for myMutex07 */ osMutexId_t myMutex07Handle; const osMutexAttr_t myMutex07_attributes = { .name = "myMutex07" }; /* Definitions for myMutex08 */ osMutexId_t myMutex08Handle; const osMutexAttr_t myMutex08_attributes = { .name = "myMutex08" }; /* Definitions for myRecursiveMutex01 */ osMutexId_t myRecursiveMutex01Handle; const osMutexAttr_t myRecursiveMutex01_attributes = { .name = "myRecursiveMutex01", .attr_bits = osMutexRecursive, }; /* Definitions for myRecursiveMutex02 */ osMutexId_t myRecursiveMutex02Handle; const osMutexAttr_t myRecursiveMutex02_attributes = { .name = "myRecursiveMutex02", .attr_bits = osMutexRecursive, }; /* Definitions for myRecursiveMutex03 */ osMutexId_t myRecursiveMutex03Handle; const osMutexAttr_t myRecursiveMutex03_attributes = { .name = "myRecursiveMutex03", .attr_bits = osMutexRecursive, }; /* Definitions for myRecursiveMutex04 */ osMutexId_t myRecursiveMutex04Handle; const osMutexAttr_t myRecursiveMutex04_attributes = { .name = "myRecursiveMutex04", .attr_bits = osMutexRecursive, }; /* Definitions for myBinarySem01 */ osSemaphoreId_t myBinarySem01Handle; const osSemaphoreAttr_t myBinarySem01_attributes = { .name = "myBinarySem01" }; /* Definitions for myBinarySem02 */ osSemaphoreId_t myBinarySem02Handle; const osSemaphoreAttr_t myBinarySem02_attributes = { .name = "myBinarySem02" }; /* Definitions for myBinarySem03 */ osSemaphoreId_t myBinarySem03Handle; const osSemaphoreAttr_t myBinarySem03_attributes = { .name = "myBinarySem03" }; /* Definitions for myBinarySem04 */ osSemaphoreId_t myBinarySem04Handle; const osSemaphoreAttr_t myBinarySem04_attributes = { .name = "myBinarySem04" }; /* Definitions for myBinarySem05 */ osSemaphoreId_t myBinarySem05Handle; const osSemaphoreAttr_t myBinarySem05_attributes = { .name = "myBinarySem05" }; /* Definitions for myBinarySem06 */ osSemaphoreId_t myBinarySem06Handle; const osSemaphoreAttr_t myBinarySem06_attributes = { .name = "myBinarySem06" }; /* Definitions for myBinarySem07 */ osSemaphoreId_t myBinarySem07Handle; const osSemaphoreAttr_t myBinarySem07_attributes = { .name = "myBinarySem07" }; /* Definitions for myBinarySem08 */ osSemaphoreId_t myBinarySem08Handle; const osSemaphoreAttr_t myBinarySem08_attributes = { .name = "myBinarySem08" }; /* Definitions for myCountingSem01 */ osSemaphoreId_t myCountingSem01Handle; const osSemaphoreAttr_t myCountingSem01_attributes = { .name = "myCountingSem01" }; /* Definitions for myCountingSem02 */ osSemaphoreId_t myCountingSem02Handle; const osSemaphoreAttr_t myCountingSem02_attributes = { .name = "myCountingSem02" }; /* Definitions for myCountingSem03 */ osSemaphoreId_t myCountingSem03Handle; const osSemaphoreAttr_t myCountingSem03_attributes = { .name = "myCountingSem03" }; /* Definitions for myCountingSem04 */ osSemaphoreId_t myCountingSem04Handle; const osSemaphoreAttr_t myCountingSem04_attributes = { .name = "myCountingSem04" }; /* Definitions for myEvent01 */ osEventFlagsId_t myEvent01Handle; const osEventFlagsAttr_t myEvent01_attributes = { .name = "myEvent01" }; /* Definitions for myEvent02 */ osEventFlagsId_t myEvent02Handle; const osEventFlagsAttr_t myEvent02_attributes = { .name = "myEvent02" }; /* Definitions for myEvent03 */ osEventFlagsId_t myEvent03Handle; const osEventFlagsAttr_t myEvent03_attributes = { .name = "myEvent03" }; /* Definitions for myEvent04 */ osEventFlagsId_t myEvent04Handle; const osEventFlagsAttr_t myEvent04_attributes = { .name = "myEvent04" }; /* Definitions for myEvent05 */ osEventFlagsId_t myEvent05Handle; const osEventFlagsAttr_t myEvent05_attributes = { .name = "myEvent05" }; /* Definitions for myEvent06 */ osEventFlagsId_t myEvent06Handle; const osEventFlagsAttr_t myEvent06_attributes = { .name = "myEvent06" }; /* Definitions for myEvent07 */ osEventFlagsId_t myEvent07Handle; const osEventFlagsAttr_t myEvent07_attributes = { .name = "myEvent07" }; /* Definitions for myEvent08 */ osEventFlagsId_t myEvent08Handle; const osEventFlagsAttr_t myEvent08_attributes = { .name = "myEvent08" }; /* USER CODE BEGIN PV */ /* USER CODE END PV */ /* Private function prototypes -----------------------------------------------*/ void SystemClock_Config(void); static void MX_GPIO_Init(void); static void MX_DMA_Init(void); static void MX_USART1_UART_Init(void); static void MX_UART5_Init(void); static void MX_USART2_UART_Init(void); static void MX_USART3_UART_Init(void); static void MX_CRC_Init(void); static void MX_DAC_Init(void); static void MX_TIM1_Init(void); static void MX_TIM4_Init(void); void StartDefaultTask(void *argument); void StartTask02(void *argument); void StartTask03(void *argument); void StartTask04(void *argument); void StartTask05(void *argument); void StartTask06(void *argument); void StartTask07(void *argument); void StartTask08(void *argument); void StartTask09(void *argument); void StartTask10(void *argument); void StartTask11(void *argument); void StartTask12(void *argument); void Callback01(void *argument); void Callback02(void *argument); void Callback03(void *argument); void Callback04(void *argument); void Callback05(void *argument); void Callback06(void *argument); void Callback07(void *argument); void Callback08(void *argument); void Callback09(void *argument); void Callback010(void *argument); void Cang_Init(void); static void MX_NVIC_Init(void); /* USER CODE BEGIN PFP */ void Flash_ReadBytes(uint16_t* sorBuf,uint32_t FlashAddr,uint16_t len) { uint16_t* p = sorBuf; uint8_t i = 0,j = 0; uint32_t addr = FlashAddr; while(len--) { i = *(uint32_t*)addr++; j = *(uint32_t*)addr++; *p++ = j<<8|i; } } uint16_t Flashbuf[2048]__attribute__ ((at(0X20001000)));// {0}; //uint8_t UART_RX_BUF[1024] __attribute__ ((at(0X20001000))); void Flash_WriteBytes(uint16_t* sorBuf,uint32_t FlashAddr,uint16_t len) { uint32_t Offset_ADDR = 0,Page_StartAddr = 0,i = 0; Offset_ADDR = FlashAddr%0x800; Page_StartAddr = FlashAddr - Offset_ADDR; //设置PageError uint32_t PageError = 0; FLASH_EraseInitTypeDef f; f.TypeErase = FLASH_TYPEERASE_PAGES; __nop(); f.PageAddress =Page_StartAddr; f.NbPages = 1; Flash_ReadBytes(Flashbuf,Page_StartAddr,0x400); for(i = 0;iCang_Num = 3; //默认三仓 } else pcang->Cang_Num = Flash_buff[0]; if(Flash_buff[1] == 0xffff) { i = 0; while(i < pcang->Cang_Num) { pcang->RKG_Num[i] = 1; //默认每仓1人孔大盖 pcang->RKG_DG = 1; //默认有大盖 i++; } } else { i = 0; while(i Cang_Num) { pcang->RKG_Num[i] = Flash_buff[1]; //默认每仓1人孔盖 pcang->RKG_DG = Flash_buff[1]; i++; } } if(Flash_buff[2] == 0xffff) pcang->RKG_XG = 0; //默认无人孔小盖 else pcang->RKG_XG = Flash_buff[2]; if(Flash_buff[3] == 0xffff) { i = 0; while(i Cang_Num) { pcang->XYF_INSTALL = 1; // 默认有卸油阀SLM pcang->XYF_Num[i] = 1; //默认每仓1卸油阀 i++; } } else { i = 0; while(i Cang_Num) { pcang->XYF_INSTALL = 1; // 默认有卸油阀SLM pcang->XYF_Num[i] = Flash_buff[3]; i++; } } if(Flash_buff[4] == 0xffff) { i = 0; while(i Cang_Num) { pcang->HDF_INSTALL = 1; pcang->HDF_Num[i] = 1; //默认每仓1海底阀 i++; } } else { i = 0; while(i Cang_Num) { pcang->HDF_INSTALL = 1;//slm pcang->HDF_Num[i] = Flash_buff[4]; i++; } } Flash_ReadBytes(Flash_buff,ADDR_RKGSENSOR_TYPE,1); if(Flash_buff[0] == 0xffff) pcang->RKG_Type = 1; //默认人孔盖角度传感器 1磁电编码传感器 else pcang->RKG_Type = Flash_buff[0]; Flash_ReadBytes(Flash_buff,ADDR_XYFSENSOR_TYPE,1); if(Flash_buff[0] == 0xffff) pcang->XYF_Type = 0; //默认卸油阀霍尔二合一 else pcang->XYF_Type = Flash_buff[0]; Flash_ReadBytes(Flash_buff,ADDR_HDFSENSOR_TYPE,1); if(Flash_buff[0] == 0xffff) pcang->HDF_Type = 1; //默认底阀监测器 1智能底阀 else pcang->HDF_Type = Flash_buff[0]; Flash_ReadBytes(Flash_buff,ADDR_RKG_NUM,8); //检测是否对阀门种类及数量进行配置 for(i = 0;i < 8;i++) { if((Flash_buff[i] < 8)) pcang->RKG_Num[i] = Flash_buff[i]; else pcang->RKG_Num[i] = 1; //默认每仓1人孔阀 } Flash_ReadBytes(Flash_buff,ADDR_XYF_NUM,8); for(i = 0;i < 8;i++) { if((Flash_buff[i] < 8)) pcang->XYF_Num[i] = Flash_buff[i]; else pcang->XYF_Num[i] = 1; //默认每仓1卸油阀 slm } Flash_ReadBytes(Flash_buff,ADDR_HDF_NUM,8); for(i = 0;i < 8;i++) { if((Flash_buff[i] < 8)) pcang->HDF_Num[i] = Flash_buff[i]; else pcang->HDF_Num[i] = 1; //默认每仓1海底阀 slm } Flash_ReadBytes(Flash_buff,ADDR_YQHS_TYPE,1); if(Flash_buff[0] == 0xffff) pcang->YQHS = 0; //默认无油气回收 slm else pcang->YQHS = Flash_buff[0]; Flash_ReadBytes(Flash_buff,ADDR_LEVEL_TYPE,1); if(Flash_buff[0] == 0xffff) pcang->Level = 2; //默认磁致伸缩液位传感器 slm else pcang->Level = Flash_buff[0]; Flash_ReadBytes(Flash_buff,ADDR_SENSOR_BUS_MAX_RETRY,1); if(Flash_buff[0] == 0xffff) pcang->sensorBusMaxReTry = 3; else pcang->sensorBusMaxReTry = Flash_buff[0]; if(pcang->sensorBusMaxReTry > 1000) pcang->sensorBusMaxReTry = 1000; // 设置硬上限 Flash_ReadBytes(Flash_buff,CANG1_LEVEL_CAL,8); if(Flash_buff[0] == 0xffff) { for(i=0;iCang_Num;++i) { plevel[i+1].Level_Cal_zero = 0; } } else { for (i = 0; i < pcang->Cang_Num; ++i) { hex_to_float1.arr[3] = (uint8_t)(Flash_buff[0+2*i] >> 8); hex_to_float1.arr[2] = (uint8_t)(Flash_buff[0+2*i] & 0xFF); // Flash_buff[3]; hex_to_float1.arr[1] = (uint8_t)(Flash_buff[1+2*i] >> 8); hex_to_float1.arr[0] = (uint8_t)(Flash_buff[1+2*i] & 0xFF); plevel[i + 1].Level_Cal_zero = hex_to_float1.Ldcal_zero_temp; } } Flash_ReadBytes(Flash_buff,ADDR_TEM_TYPE,1); if(Flash_buff[0] == 0xffff) pcang->Temperture = 1; //默认无温度传感器 else pcang->Temperture = Flash_buff[0]; Flash_ReadBytes(Flash_buff,ADDR_ANGLE_TYPE,1); if(Flash_buff[0] == 0xffff) pcang->Angle = 1; //默认无姿态传感器 else pcang->Angle = Flash_buff[0]; Flash_ReadBytes(Flash_buff,ADDR_SDATEJUDGE_NUM,1); if(Flash_buff[0] == 0xffff) { for (i = 0; i < 8; i++) { prkg[i].RKG_StateKeepNum = 5; //默认人孔盖角度传感器 pxyf[i].XYF_StateKeepNum = 5; } phdf->HDF_StateKeepNum = 5; pangle->Angle_StateKeepNum = 5; plevel->Level_StateKeepNum = 5; ptem->TEM_StateKeepNum = 5; } else { for (i = 0; i < 8; i++) { prkg[i].RKG_StateKeepNum = Flash_buff[0]; pxyf[i].XYF_StateKeepNum = Flash_buff[0]; } pxyf->XYF_StateKeepNum = Flash_buff[0]; phdf->HDF_StateKeepNum = Flash_buff[0]; __NOP(); pangle->Angle_StateKeepNum = Flash_buff[0]; plevel->Level_StateKeepNum = Flash_buff[0]; ptem->TEM_StateKeepNum = Flash_buff[0]; } } /* USER CODE END PFP */ /* Private user code ---------------------------------------------------------*/ /* USER CODE BEGIN 0 */ /* USER CODE END 0 */ /**4 * @brief The application entry point. * @retval int */ uint8_t bufMain[128]; int main(void) { /* USER CODE BEGIN 1 */ GPIO_InitTypeDef GPIO_InitStruct = {0}; int spr000; /* USER CODE END 1 */ #if IR_ROM1 == 0x08000000 Start_BootLoader(); #else SCB->VTOR = 0x08020000; __set_PRIMASK(0); #endif /* MCU Configuration--------------------------------------------------------*/ /* Reset of all peripherals, Initializes the Flash interface and the Systick. */ HAL_Init(); /* USER CODE BEGIN Init */ Cang_Init(); //应用程序初始化函数 RKG_Init(); XYF_Init(); BGY_Init(); /* USER CODE END Init */ /* Configure the system clock */ SystemClock_Config(); /* USER CODE BEGIN SysInit */ /* USER CODE END SysInit */ /* Initialize all configured peripherals */ MX_GPIO_Init(); MX_DMA_Init(); MX_USART1_UART_Init(); MX_UART5_Init(); MX_USART2_UART_Init(); MX_USART3_UART_Init(); MX_CRC_Init(); MX_DAC_Init(); MX_TIM1_Init(); MX_TIM4_Init(); /* Initialize interrupts */ MX_NVIC_Init(); /* USER CODE BEGIN 2 */ HAL_GPIO_WritePin(GPIOB,Con01_uart1_rankonggai_Pin,GPIO_PIN_SET);//切换为接收模式 HAL_GPIO_WritePin(GPIOB,con02_uart3_xieyoufa_Pin,GPIO_PIN_SET);//切换为接收模式 HAL_GPIO_WritePin(con03_uart2_kongzhiqi_GPIO_Port,con03_uart2_kongzhiqi_Pin,GPIO_PIN_SET);//切换为接收模式 //看门狗重新根据宏定义初始化 GPIO_InitStruct.Pin = WDI_sp706_kanmemgou_Pin; if(WatchDogOn)//打开看门狗sp706 //if(1)//打开看门狗sp706 { // GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP; } else { GPIO_InitStruct.Mode = GPIO_MODE_INPUT; } GPIO_InitStruct.Pull = GPIO_NOPULL; GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW; HAL_GPIO_Init(WDI_sp706_kanmemgou_GPIO_Port, &GPIO_InitStruct); HAL_GPIO_WritePin(GPIOB,Con01_uart1_rankonggai_Pin,GPIO_PIN_RESET);//切换为发送模式CON=0;// HAL_GPIO_WritePin(GPIOB,Con01_uart1_rankonggai_Pin,GPIO_PIN_RESET);//切换为接收模式 HAL_GPIO_WritePin(GPIOB,con02_uart3_xieyoufa_Pin,GPIO_PIN_RESET);//切换为接收模式 HAL_GPIO_WritePin(con03_uart2_kongzhiqi_GPIO_Port,con03_uart2_kongzhiqi_Pin,GPIO_PIN_RESET);//切换为接收模式 HAL_Delay(2); memset(bufMain,0,128); spr000=sprintf((char*)bufMain,"sysytem reset...%5d, watchDogOn=%d, version:%d",5,WatchDogOn,Version_Soft[7]); //HAL_UART_Transmit(&huart1,bufMain,32,300); HAL_UART_Transmit(&huart2,bufMain,spr000,300); //HAL_UART_Transmit(&huart3,bufMain,32,300); HAL_GPIO_WritePin(GPIOB,Con01_uart1_rankonggai_Pin,GPIO_PIN_SET);//切换为接收模式 HAL_GPIO_WritePin(GPIOB,con02_uart3_xieyoufa_Pin,GPIO_PIN_SET);//切换为接收模式 HAL_GPIO_WritePin(con03_uart2_kongzhiqi_GPIO_Port,con03_uart2_kongzhiqi_Pin,GPIO_PIN_SET);//切换为接收模式 /* USER CODE END 2 */ /* Init scheduler */ osKernelInitialize(); /* Create the mutex(es) */ /* creation of myMutex01 */ myMutex01Handle = osMutexNew(&myMutex01_attributes); /* creation of myMutex02 */ myMutex02Handle = osMutexNew(&myMutex02_attributes); /* creation of myMutex03 */ myMutex03Handle = osMutexNew(&myMutex03_attributes); /* creation of myMutex04 */ myMutex04Handle = osMutexNew(&myMutex04_attributes); /* creation of myMutex05 */ myMutex05Handle = osMutexNew(&myMutex05_attributes); /* creation of myMutex06 */ myMutex06Handle = osMutexNew(&myMutex06_attributes); /* creation of myMutex07 */ myMutex07Handle = osMutexNew(&myMutex07_attributes); /* creation of myMutex08 */ myMutex08Handle = osMutexNew(&myMutex08_attributes); /* Create the recursive mutex(es) */ /* creation of myRecursiveMutex01 */ myRecursiveMutex01Handle = osMutexNew(&myRecursiveMutex01_attributes); /* creation of myRecursiveMutex02 */ myRecursiveMutex02Handle = osMutexNew(&myRecursiveMutex02_attributes); /* creation of myRecursiveMutex03 */ myRecursiveMutex03Handle = osMutexNew(&myRecursiveMutex03_attributes); /* creation of myRecursiveMutex04 */ myRecursiveMutex04Handle = osMutexNew(&myRecursiveMutex04_attributes); /* USER CODE BEGIN RTOS_MUTEX */ /* add mutexes, ... */ /* USER CODE END RTOS_MUTEX */ /* Create the semaphores(s) */ /* creation of myBinarySem01 */ myBinarySem01Handle = osSemaphoreNew(1, 1, &myBinarySem01_attributes); /* creation of myBinarySem02 */ myBinarySem02Handle = osSemaphoreNew(1, 1, &myBinarySem02_attributes); /* creation of myBinarySem03 */ myBinarySem03Handle = osSemaphoreNew(1, 1, &myBinarySem03_attributes); /* creation of myBinarySem04 */ myBinarySem04Handle = osSemaphoreNew(1, 1, &myBinarySem04_attributes); /* creation of myBinarySem05 */ myBinarySem05Handle = osSemaphoreNew(1, 1, &myBinarySem05_attributes); /* creation of myBinarySem06 */ myBinarySem06Handle = osSemaphoreNew(1, 1, &myBinarySem06_attributes); /* creation of myBinarySem07 */ myBinarySem07Handle = osSemaphoreNew(1, 1, &myBinarySem07_attributes); /* creation of myBinarySem08 */ myBinarySem08Handle = osSemaphoreNew(1, 1, &myBinarySem08_attributes); /* creation of myCountingSem01 */ myCountingSem01Handle = osSemaphoreNew(2, 2, &myCountingSem01_attributes); /* creation of myCountingSem02 */ myCountingSem02Handle = osSemaphoreNew(2, 2, &myCountingSem02_attributes); /* creation of myCountingSem03 */ myCountingSem03Handle = osSemaphoreNew(2, 2, &myCountingSem03_attributes); /* creation of myCountingSem04 */ myCountingSem04Handle = osSemaphoreNew(2, 2, &myCountingSem04_attributes); /* USER CODE BEGIN RTOS_SEMAPHORES */ /* add semaphores, ... */ /* USER CODE END RTOS_SEMAPHORES */ /* Create the timer(s) */ /* creation of myTimer01 */ myTimer01Handle = osTimerNew(Callback01, osTimerPeriodic, NULL, &myTimer01_attributes); /* creation of myTimer02 */ myTimer02Handle = osTimerNew(Callback02, osTimerPeriodic, NULL, &myTimer02_attributes); /* creation of myTimer03 */ myTimer03Handle = osTimerNew(Callback03, osTimerPeriodic, NULL, &myTimer03_attributes); /* creation of myTimer04 */ myTimer04Handle = osTimerNew(Callback04, osTimerPeriodic, NULL, &myTimer04_attributes); /* creation of myTimer05 */ myTimer05Handle = osTimerNew(Callback05, osTimerPeriodic, NULL, &myTimer05_attributes); /* creation of myTimer06 */ myTimer06Handle = osTimerNew(Callback06, osTimerPeriodic, NULL, &myTimer06_attributes); /* creation of myTimer07 */ myTimer07Handle = osTimerNew(Callback07, osTimerPeriodic, NULL, &myTimer07_attributes); /* creation of myTimer08 */ myTimer08Handle = osTimerNew(Callback08, osTimerPeriodic, NULL, &myTimer08_attributes); /* creation of myTimer09 */ myTimer09Handle = osTimerNew(Callback09, osTimerPeriodic, NULL, &myTimer09_attributes); /* creation of myTimer10 */ myTimer10Handle = osTimerNew(Callback010, osTimerPeriodic, NULL, &myTimer10_attributes); /* USER CODE BEGIN RTOS_TIMERS */ /* start timers, add new ones, ... */ /* USER CODE END RTOS_TIMERS */ /* Create the queue(s) */ /* creation of myQueue01 */ myQueue01Handle = osMessageQueueNew (16, sizeof(uint16_t), &myQueue01_attributes); /* creation of myQueue02 */ myQueue02Handle = osMessageQueueNew (16, sizeof(uint16_t), &myQueue02_attributes); /* creation of myQueue03 */ myQueue03Handle = osMessageQueueNew (16, sizeof(uint16_t), &myQueue03_attributes); /* creation of myQueue04 */ myQueue04Handle = osMessageQueueNew (16, sizeof(uint16_t), &myQueue04_attributes); /* creation of myQueue05 */ myQueue05Handle = osMessageQueueNew (16, sizeof(uint16_t), &myQueue05_attributes); /* creation of myQueue06 */ myQueue06Handle = osMessageQueueNew (16, sizeof(uint16_t), &myQueue06_attributes); /* USER CODE BEGIN RTOS_QUEUES */ /* add queues, ... */ /* USER CODE END RTOS_QUEUES */ /* Create the thread(s) */ /* creation of defaultTask */ defaultTaskHandle = osThreadNew(StartDefaultTask, NULL, &defaultTask_attributes); /* creation of myTask02 */ myTask02Handle = osThreadNew(StartTask02, NULL, &myTask02_attributes); /* creation of myTask03 */ myTask03Handle = osThreadNew(StartTask03, NULL, &myTask03_attributes); /* creation of myTask04 */ myTask04Handle = osThreadNew(StartTask04, NULL, &myTask04_attributes); /* creation of myTask05 */ myTask05Handle = osThreadNew(StartTask05, NULL, &myTask05_attributes); /* creation of myTask06 */ myTask06Handle = osThreadNew(StartTask06, NULL, &myTask06_attributes); /* creation of myTask07 */ myTask07Handle = osThreadNew(StartTask07, NULL, &myTask07_attributes); /* creation of myTask08 */ myTask08Handle = osThreadNew(StartTask08, NULL, &myTask08_attributes); /* creation of myTask09 */ myTask09Handle = osThreadNew(StartTask09, NULL, &myTask09_attributes); /* creation of myTask10 */ myTask10Handle = osThreadNew(StartTask10, NULL, &myTask10_attributes); /* creation of myTask11 */ myTask11Handle = osThreadNew(StartTask11, NULL, &myTask11_attributes); /* creation of myTask12 */ myTask12Handle = osThreadNew(StartTask12, NULL, &myTask12_attributes); /* USER CODE BEGIN RTOS_THREADS */ /* add threads, ... */ /* USER CODE END RTOS_THREADS */ /* creation of myEvent01 */ myEvent01Handle = osEventFlagsNew(&myEvent01_attributes); /* creation of myEvent02 */ myEvent02Handle = osEventFlagsNew(&myEvent02_attributes); /* creation of myEvent03 */ myEvent03Handle = osEventFlagsNew(&myEvent03_attributes); /* creation of myEvent04 */ myEvent04Handle = osEventFlagsNew(&myEvent04_attributes); /* creation of myEvent05 */ myEvent05Handle = osEventFlagsNew(&myEvent05_attributes); /* creation of myEvent06 */ myEvent06Handle = osEventFlagsNew(&myEvent06_attributes); /* creation of myEvent07 */ myEvent07Handle = osEventFlagsNew(&myEvent07_attributes); /* creation of myEvent08 */ myEvent08Handle = osEventFlagsNew(&myEvent08_attributes); /* USER CODE BEGIN RTOS_EVENTS */ /* add events, ... */ /* USER CODE END RTOS_EVENTS */ /* Start scheduler */ osKernelStart(); /* We should never get here as control is now taken by the scheduler */ /* Infinite loop */ /* USER CODE BEGIN WHILE */ while (1) { } /* USER CODE END WHILE */ /* USER CODE BEGIN 3 */ /* USER CODE END 3 */ } /** * @brief System Clock Configuration * @retval None */ void SystemClock_Config(void) { RCC_OscInitTypeDef RCC_OscInitStruct = {0}; RCC_ClkInitTypeDef RCC_ClkInitStruct = {0}; /** Initializes the RCC Oscillators according to the specified parameters * in the RCC_OscInitTypeDef structure. */ RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSE; RCC_OscInitStruct.HSEState = RCC_HSE_ON; RCC_OscInitStruct.HSEPredivValue = RCC_HSE_PREDIV_DIV1; RCC_OscInitStruct.HSIState = RCC_HSI_ON; RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON; RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSE; RCC_OscInitStruct.PLL.PLLMUL = RCC_PLL_MUL9; if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK) { Error_Handler(); } /** Initializes the CPU, AHB and APB buses clocks */ RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_SYSCLK |RCC_CLOCKTYPE_PCLK1|RCC_CLOCKTYPE_PCLK2; RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK; RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1; RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV2; RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1; if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_2) != HAL_OK) { Error_Handler(); } } /** * @brief NVIC Configuration. * @retval None */ static void MX_NVIC_Init(void) { /* USART3_IRQn interrupt configuration */ HAL_NVIC_SetPriority(USART3_IRQn, 5, 0); HAL_NVIC_EnableIRQ(USART3_IRQn); /* USART1_IRQn interrupt configuration */ HAL_NVIC_SetPriority(USART1_IRQn, 5, 0); HAL_NVIC_EnableIRQ(USART1_IRQn); /* USART2_IRQn interrupt configuration */ HAL_NVIC_SetPriority(USART2_IRQn, 5, 0); HAL_NVIC_EnableIRQ(USART2_IRQn); /* TIM4_IRQn interrupt configuration */ HAL_NVIC_SetPriority(TIM4_IRQn, 5, 0); HAL_NVIC_EnableIRQ(TIM4_IRQn); /* TIM1_UP_IRQn interrupt configuration */ HAL_NVIC_SetPriority(TIM1_UP_IRQn, 5, 0); HAL_NVIC_EnableIRQ(TIM1_UP_IRQn); /* DMA1_Channel6_IRQn interrupt configuration */ HAL_NVIC_SetPriority(DMA1_Channel6_IRQn, 5, 0); HAL_NVIC_EnableIRQ(DMA1_Channel6_IRQn); /* DMA1_Channel5_IRQn interrupt configuration */ HAL_NVIC_SetPriority(DMA1_Channel5_IRQn, 5, 0); HAL_NVIC_EnableIRQ(DMA1_Channel5_IRQn); /* DMA1_Channel3_IRQn interrupt configuration */ HAL_NVIC_SetPriority(DMA1_Channel3_IRQn, 5, 0); HAL_NVIC_EnableIRQ(DMA1_Channel3_IRQn); } /** * @brief CRC Initialization Function * @param None * @retval None */ static void MX_CRC_Init(void) { /* USER CODE BEGIN CRC_Init 0 */ /* USER CODE END CRC_Init 0 */ /* USER CODE BEGIN CRC_Init 1 */ /* USER CODE END CRC_Init 1 */ hcrc.Instance = CRC; if (HAL_CRC_Init(&hcrc) != HAL_OK) { Error_Handler(); } /* USER CODE BEGIN CRC_Init 2 */ /* USER CODE END CRC_Init 2 */ } /** * @brief DAC Initialization Function * @param None * @retval None */ static void MX_DAC_Init(void) { /* USER CODE BEGIN DAC_Init 0 */ /* USER CODE END DAC_Init 0 */ DAC_ChannelConfTypeDef sConfig = {0}; /* USER CODE BEGIN DAC_Init 1 */ /* USER CODE END DAC_Init 1 */ /** DAC Initialization */ hdac.Instance = DAC; if (HAL_DAC_Init(&hdac) != HAL_OK) { Error_Handler(); } /** DAC channel OUT2 config */ sConfig.DAC_Trigger = DAC_TRIGGER_SOFTWARE; sConfig.DAC_OutputBuffer = DAC_OUTPUTBUFFER_ENABLE; if (HAL_DAC_ConfigChannel(&hdac, &sConfig, DAC_CHANNEL_2) != HAL_OK) { Error_Handler(); } /* USER CODE BEGIN DAC_Init 2 */ /* USER CODE END DAC_Init 2 */ } /** * @brief TIM1 Initialization Function * @param None * @retval None */ static void MX_TIM1_Init(void) { /* USER CODE BEGIN TIM1_Init 0 */ /* USER CODE END TIM1_Init 0 */ TIM_ClockConfigTypeDef sClockSourceConfig = {0}; TIM_MasterConfigTypeDef sMasterConfig = {0}; /* USER CODE BEGIN TIM1_Init 1 */ /* USER CODE END TIM1_Init 1 */ htim1.Instance = TIM1; htim1.Init.Prescaler = 0; htim1.Init.CounterMode = TIM_COUNTERMODE_UP; htim1.Init.Period = 65535; htim1.Init.ClockDivision = TIM_CLOCKDIVISION_DIV4; htim1.Init.RepetitionCounter = 0; htim1.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_DISABLE; if (HAL_TIM_Base_Init(&htim1) != HAL_OK) { Error_Handler(); } sClockSourceConfig.ClockSource = TIM_CLOCKSOURCE_INTERNAL; if (HAL_TIM_ConfigClockSource(&htim1, &sClockSourceConfig) != HAL_OK) { Error_Handler(); } sMasterConfig.MasterOutputTrigger = TIM_TRGO_RESET; sMasterConfig.MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE; if (HAL_TIMEx_MasterConfigSynchronization(&htim1, &sMasterConfig) != HAL_OK) { Error_Handler(); } /* USER CODE BEGIN TIM1_Init 2 */ /* USER CODE END TIM1_Init 2 */ } /** * @brief TIM4 Initialization Function * @param None * @retval None */ static void MX_TIM4_Init(void) { /* USER CODE BEGIN TIM4_Init 0 */ /* USER CODE END TIM4_Init 0 */ TIM_ClockConfigTypeDef sClockSourceConfig = {0}; TIM_MasterConfigTypeDef sMasterConfig = {0}; /* USER CODE BEGIN TIM4_Init 1 */ /* USER CODE END TIM4_Init 1 */ htim4.Instance = TIM4; htim4.Init.Prescaler = 0; htim4.Init.CounterMode = TIM_COUNTERMODE_UP; htim4.Init.Period = 65535; htim4.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1; htim4.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_DISABLE; if (HAL_TIM_Base_Init(&htim4) != HAL_OK) { Error_Handler(); } sClockSourceConfig.ClockSource = TIM_CLOCKSOURCE_INTERNAL; if (HAL_TIM_ConfigClockSource(&htim4, &sClockSourceConfig) != HAL_OK) { Error_Handler(); } sMasterConfig.MasterOutputTrigger = TIM_TRGO_RESET; sMasterConfig.MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE; if (HAL_TIMEx_MasterConfigSynchronization(&htim4, &sMasterConfig) != HAL_OK) { Error_Handler(); } /* USER CODE BEGIN TIM4_Init 2 */ /* USER CODE END TIM4_Init 2 */ } /** * @brief UART5 Initialization Function * @param None * @retval None */ static void MX_UART5_Init(void) { /* USER CODE BEGIN UART5_Init 0 */ /* USER CODE END UART5_Init 0 */ /* USER CODE BEGIN UART5_Init 1 */ /* USER CODE END UART5_Init 1 */ huart5.Instance = UART5; huart5.Init.BaudRate = 115200; huart5.Init.WordLength = UART_WORDLENGTH_8B; huart5.Init.StopBits = UART_STOPBITS_1; huart5.Init.Parity = UART_PARITY_NONE; huart5.Init.Mode = UART_MODE_TX_RX; huart5.Init.HwFlowCtl = UART_HWCONTROL_NONE; huart5.Init.OverSampling = UART_OVERSAMPLING_16; if (HAL_UART_Init(&huart5) != HAL_OK) { Error_Handler(); } /* USER CODE BEGIN UART5_Init 2 */ /* USER CODE END UART5_Init 2 */ } /** * @brief USART1 Initialization Function * @param None * @retval None */ static void MX_USART1_UART_Init(void) { /* USER CODE BEGIN USART1_Init 0 */ extern uint8_t USART1_RX_BUF[Uart1_BUF_SIZE]; /* USER CODE END USART1_Init 0 */ /* USER CODE BEGIN USART1_Init 1 */ /* USER CODE END USART1_Init 1 */ huart1.Instance = USART1; huart1.Init.BaudRate = 9600; huart1.Init.WordLength = UART_WORDLENGTH_8B; huart1.Init.StopBits = UART_STOPBITS_1; huart1.Init.Parity = UART_PARITY_NONE; huart1.Init.Mode = UART_MODE_TX_RX; huart1.Init.HwFlowCtl = UART_HWCONTROL_NONE; huart1.Init.OverSampling = UART_OVERSAMPLING_16; if (HAL_UART_Init(&huart1) != HAL_OK) { Error_Handler(); } /* USER CODE BEGIN USART1_Init 2 */ __HAL_UART_ENABLE_IT(&huart1, UART_IT_IDLE); HAL_UART_Receive_DMA(&huart1,USART1_RX_BUF,Uart1_BUF_SIZE); /* USER CODE END USART1_Init 2 */ } /** * @brief USART2 Initialization Function * @param None * @retval None */ static void MX_USART2_UART_Init(void) { /* USER CODE BEGIN USART2_Init 0 */ /* USER CODE END USART2_Init 0 */ /* USER CODE BEGIN USART2_Init 1 */ /* USER CODE END USART2_Init 1 */ huart2.Instance = USART2; huart2.Init.BaudRate = 38400;//19200 huart2.Init.WordLength = UART_WORDLENGTH_8B; huart2.Init.StopBits = UART_STOPBITS_1; huart2.Init.Parity = UART_PARITY_NONE; huart2.Init.Mode = UART_MODE_TX_RX; huart2.Init.HwFlowCtl = UART_HWCONTROL_NONE; huart2.Init.OverSampling = UART_OVERSAMPLING_16; if (HAL_UART_Init(&huart2) != HAL_OK) { Error_Handler(); } /* USER CODE BEGIN USART2_Init 2 */ __HAL_UART_ENABLE_IT(&huart2, UART_IT_IDLE); HAL_UART_Receive_DMA(&huart2,USART2_RX_BUF,Uart2_BUF_SIZE); /* USER CODE END USART2_Init 2 */ } /** * @brief USART3 Initialization Function * @param None * @retval None */ static void MX_USART3_UART_Init(void) { /* USER CODE BEGIN USART3_Init 0 */ /* USER CODE END USART3_Init 0 */ /* USER CODE BEGIN USART3_Init 1 */ /* USER CODE END USART3_Init 1 */ huart3.Instance = USART3; huart3.Init.BaudRate = 9600; huart3.Init.WordLength = UART_WORDLENGTH_8B; huart3.Init.StopBits = UART_STOPBITS_1; huart3.Init.Parity = UART_PARITY_NONE; huart3.Init.Mode = UART_MODE_TX_RX; huart3.Init.HwFlowCtl = UART_HWCONTROL_NONE; huart3.Init.OverSampling = UART_OVERSAMPLING_16; if (HAL_UART_Init(&huart3) != HAL_OK) { Error_Handler(); } /* USER CODE BEGIN USART3_Init 2 */ __HAL_UART_ENABLE_IT(&huart3, UART_IT_IDLE); HAL_UART_Receive_DMA(&huart3,USART3_RX_BUF,Uart3_BUF_SIZE); /* USER CODE END USART3_Init 2 */ } /** * Enable DMA controller clock */ static void MX_DMA_Init(void) { /* DMA controller clock enable */ __HAL_RCC_DMA1_CLK_ENABLE(); __HAL_RCC_DMA2_CLK_ENABLE(); /* DMA interrupt init */ /* DMA1_Channel4_IRQn interrupt configuration */ HAL_NVIC_SetPriority(DMA1_Channel4_IRQn, 5, 0); HAL_NVIC_EnableIRQ(DMA1_Channel4_IRQn); /* DMA2_Channel4_5_IRQn interrupt configuration */ HAL_NVIC_SetPriority(DMA2_Channel4_5_IRQn, 5, 0); HAL_NVIC_EnableIRQ(DMA2_Channel4_5_IRQn); } /** * @brief GPIO Initialization Function * @param None * @retval None */ static void MX_GPIO_Init(void) { GPIO_InitTypeDef GPIO_InitStruct = {0}; /* GPIO Ports Clock Enable */ __HAL_RCC_GPIOD_CLK_ENABLE(); __HAL_RCC_GPIOA_CLK_ENABLE(); __HAL_RCC_GPIOB_CLK_ENABLE(); __HAL_RCC_GPIOC_CLK_ENABLE(); /*Configure GPIO pin Output Level */ HAL_GPIO_WritePin(GPIOA, LED1_Pin|LED2_Pin|con03_uart2_kongzhiqi_Pin, GPIO_PIN_RESET); /*Configure GPIO pin Output Level */ HAL_GPIO_WritePin(GPIOB, con02_uart3_xieyoufa_Pin|Con01_uart1_rankonggai_Pin, GPIO_PIN_RESET); /*Configure GPIO pin Output Level */ HAL_GPIO_WritePin(WDI_sp706_kanmemgou_GPIO_Port, WDI_sp706_kanmemgou_Pin, GPIO_PIN_RESET); /*Configure GPIO pins : LED1_Pin LED2_Pin con03_uart2_kongzhiqi_Pin */ GPIO_InitStruct.Pin = LED1_Pin|LED2_Pin|con03_uart2_kongzhiqi_Pin; GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP; GPIO_InitStruct.Pull = GPIO_NOPULL; GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW; HAL_GPIO_Init(GPIOA, &GPIO_InitStruct); /*Configure GPIO pins : con02_uart3_xieyoufa_Pin Con01_uart1_rankonggai_Pin */ GPIO_InitStruct.Pin = con02_uart3_xieyoufa_Pin|Con01_uart1_rankonggai_Pin; GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP; GPIO_InitStruct.Pull = GPIO_NOPULL; GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW; HAL_GPIO_Init(GPIOB, &GPIO_InitStruct); /*Configure GPIO pins : IN01_Pin PB15 */ GPIO_InitStruct.Pin = GPIO_PIN_14|GPIO_PIN_15; GPIO_InitStruct.Mode = GPIO_MODE_INPUT; GPIO_InitStruct.Pull = GPIO_NOPULL; HAL_GPIO_Init(GPIOB, &GPIO_InitStruct); /*Configure GPIO pins : PC6 PC7 PC8 PC9 */ GPIO_InitStruct.Pin = GPIO_PIN_6|GPIO_PIN_7|GPIO_PIN_8|GPIO_PIN_9; GPIO_InitStruct.Mode = GPIO_MODE_INPUT; GPIO_InitStruct.Pull = GPIO_NOPULL; HAL_GPIO_Init(GPIOC, &GPIO_InitStruct); /*Configure GPIO pins : PA8 PA11 */ GPIO_InitStruct.Pin = GPIO_PIN_8|GPIO_PIN_11; GPIO_InitStruct.Mode = GPIO_MODE_INPUT; GPIO_InitStruct.Pull = GPIO_NOPULL; HAL_GPIO_Init(GPIOA, &GPIO_InitStruct); /*Configure GPIO pin : WDI_sp706_kanmemgou_Pin */ GPIO_InitStruct.Pin = WDI_sp706_kanmemgou_Pin; if(WatchDogOn)//打开看门狗sp706 //if(1)//打开看门狗sp706 { // GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP; } else { GPIO_InitStruct.Mode = GPIO_MODE_INPUT; } GPIO_InitStruct.Pull = GPIO_NOPULL; GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW; HAL_GPIO_Init(WDI_sp706_kanmemgou_GPIO_Port, &GPIO_InitStruct); } /* USER CODE BEGIN 4 */ /** * @funNm : delay_sys_us * @brief : 延时nus * @param : nus:要延时的us数. 0~204522252(最大值即2^32/fac_us@fac_us=168) * @retval: void */ void delay_sys_us(uint32_t Delay)//1个delay,大概1.5us { uint32_t cnt = Delay * 8; uint32_t i = 0; for(i = 0; i < cnt; i++)__NOP(); } /* USER CODE END 4 */ /* USER CODE BEGIN Header_StartDefaultTask */ /** * @brief Function implementing the defaultTask thread. * @param argument: Not used * @retval None */ /* USER CODE END Header_StartDefaultTask */ void StartDefaultTask(void *argument) { /* USER CODE BEGIN 5 */ /* Infinite loop */ for(;;) { osDelay(1); } /* USER CODE END 5 */ } /* USER CODE BEGIN Header_StartTask02 */ /** * @brief Function implementing the myTask02 thread. * @param argument: Not used * @retval None */ uint8_t Flash_Change = 0; //定义接收数组 uni_float tprture001,tprture002,tprture003,Yewei001,tprtureAver; /* USER CODE END Header_StartTask02 */ /* //发送卸油阀传感器命令轮询 //发送角度传感器命令轮询 //发送壁挂油传感器命令轮询 //发送智能海底阀传感器命令轮询 //发送油气回收传感器命令轮询 */ void StartTask02(void *argument) //卸油阀总线传感器命令轮询 UART3 { /* USER CODE BEGIN StartTask02 */ uint8_t i001=0,i002 = 0; uint16_t ModbusCRC = 0,xyfaddr_max = 0,hdfaddr_max; //xyfaddr_max:卸油阀最高地址,根据每仓卸油阀之和计算得出 static uint16_t i = 0,j = 0,receive_error = 0; HDF_Inf* phdf = hdf_inf; KZQ_Inf* pkzq = &kzq_inf; XYF_Inf* pxyf = xyf_inf; Cang_Inf* pcang = &cang_inf; Angle_Inf* pangle = &angle_inf; xyfaddr_max=0; hdfaddr_max=0; for(i = 0;i < pcang->Cang_Num;i++) { xyfaddr_max += pcang->XYF_Num[i]; hdfaddr_max += pcang->HDF_Num[i]; } i = 0; extern uint8_t USART2_RX_BUF002[Uart2_BUF_SIZE]; extern uint8_t USART1_RX_BUF002[Uart2_BUF_SIZE]; extern uint8_t USART3_RX_BUF002[Uart2_BUF_SIZE]; extern int data_lengthU2,data_lengthU1,data_lengthU3; extern int flagU1Rx,flagU2Rx,flagU3Rx; extern uint8_t USART3_RX_BUF002_print[Uart3_BUF_SIZE]; extern uint8_t XYF_TxBuf[70]; extern uint16_t Uart_len_TouChuan; /* Infinite loop */ for(;;) { osDelay(10); //以ms为单位 //HAL_GPIO_TogglePin(GPIOA,GPIO_PIN_0); HAL_GPIO_TogglePin(WDI_sp706_kanmemgou_GPIO_Port, WDI_sp706_kanmemgou_Pin); // continue; if(Flash_Change) //如果有对Flash进行改动,则重新计算xyfaddr_max { xyfaddr_max = 0; hdfaddr_max = 0; for(i = 0;i < pcang->Cang_Num;i++) { xyfaddr_max += pcang->XYF_Num[i]; hdfaddr_max += pcang->HDF_Num[i]; } Flash_Change = 0; } if(pkzq->USE_XYF == 0) //平台未控制卸油阀总线,正常轮询数据 { if(i001==0) //发送卸油阀传感器命令轮询 { if ((pcang->XYF_INSTALL != 0) && (pcang->XYF_Type != 2)) { ModbusCRC = LIB_CRC_MODBUS(CMD_XYF, 6); CMD_XYF[6] = ModbusCRC >> 8; CMD_XYF[7] = ModbusCRC & 0xff; HAL_GPIO_WritePin(GPIOB, con02_uart3_xieyoufa_Pin, GPIO_PIN_RESET); // delay_sys_us(80); HAL_UART_Transmit_IT(&huart3, CMD_XYF, 8); while (huart3.gState == HAL_UART_STATE_BUSY_TX) { osDelay(1); } HAL_GPIO_WritePin(GPIOB, con02_uart3_xieyoufa_Pin, GPIO_PIN_SET); // pxyf[CMD_XYF[0] - 0x10].RTData_Num++; //每个传感器发送帧累加 if (CMD_XYF[0] - 0x10 < xyfaddr_max) CMD_XYF[0]++; else CMD_XYF[0] = 0x11; } else { i001 = 3; } } if (i001 == 3) //发送姿态传感器轮询 { if (pcang->Angle) //发送角度传感器命令轮询 { ModbusCRC = LIB_CRC_MODBUS(CMD_Angle_XY, 6); CMD_Angle_XY[6] = ModbusCRC >> 8; CMD_Angle_XY[7] = ModbusCRC & 0xff; HAL_GPIO_WritePin(GPIOB, con02_uart3_xieyoufa_Pin, GPIO_PIN_RESET); delay_sys_us(80); HAL_UART_Transmit(&huart3, CMD_Angle_XY, 8, 100); //只支持单指令读角度取传感器数据 delay_sys_us(80); HAL_GPIO_WritePin(GPIOB, con02_uart3_xieyoufa_Pin, GPIO_PIN_SET); if (pangle->RTData_NumX > RT_ERRORCNT) { pangle->RTData_NumX = RT_ERRORCNT; pangle->Angle_ErrorCnt = RT_ERRORCNT; } else pangle->RTData_NumX++; } else { i001 = 6; } } if(i001==6) //发送壁挂油传感器命令轮询 { if(pcang->BGY_INSTALL) { ModbusCRC = LIB_CRC_MODBUS(CMD_Biguayou,6); CMD_Biguayou[6] = ModbusCRC>>8; CMD_Biguayou[7] = ModbusCRC&0xff; HAL_GPIO_WritePin(GPIOB,con02_uart3_xieyoufa_Pin,GPIO_PIN_RESET); delay_sys_us(80); HAL_UART_Transmit(&huart3,CMD_Biguayou,8,100); //只支持单指令读角度取传感器数据 delay_sys_us(80); HAL_GPIO_WritePin(GPIOB,con02_uart3_xieyoufa_Pin,GPIO_PIN_SET); } else { i001=9; } } if (i001 == 9) //发送智能海底阀传感器命令轮询 { if (pcang->HDF_INSTALL != 0 && pcang->HDF_Type) { ModbusCRC = LIB_CRC_MODBUS(CMD_HDF, 14); CMD_HDF[14] = ModbusCRC >> 8; CMD_HDF[15] = ModbusCRC & 0xff; HAL_GPIO_WritePin(GPIOB, con02_uart3_xieyoufa_Pin, GPIO_PIN_RESET); delay_sys_us(80); HAL_UART_Transmit(&huart3, CMD_HDF, 16, 100); //只支持单指令读角度取传感器数据 delay_sys_us(80); HAL_GPIO_WritePin(GPIOB, con02_uart3_xieyoufa_Pin, GPIO_PIN_SET); if (phdf[CMD_HDF[0] - 0x20].RTData_Num > 50) //收发数据错误次数RT_ERRORCNT { // phdf[CMD_HDF[0]-0x20].RTData_Num = RT_ERRORCNT; // phdf[CMD_HDF[0]-0x20].HDF_ErrorCnt = RT_ERRORCNT; } else phdf[CMD_HDF[0] - 0x20].RTData_Num++; //每个传感器发送帧累加 if (CMD_HDF[0] - 0x21 < hdfaddr_max) CMD_HDF[0]++; else CMD_HDF[0] = 0x21; } else { i001 = 12; } } if(i001==12) //发送油气回收传感器命令轮询 { if(pcang->YQHS) { ModbusCRC = LIB_CRC_MODBUS(CMD_YQHS,6); CMD_YQHS[6] = ModbusCRC>>8; CMD_YQHS[7] = ModbusCRC&0xff; HAL_GPIO_WritePin(GPIOB,con02_uart3_xieyoufa_Pin,GPIO_PIN_RESET); delay_sys_us(80); HAL_UART_Transmit(&huart3,CMD_YQHS,8,100); //只支持单指令读角度取传感器数据 delay_sys_us(80); HAL_GPIO_WritePin(GPIOB,con02_uart3_xieyoufa_Pin,GPIO_PIN_SET); } else { i001=0; continue; } } } else //平台通过卸油阀总线直接操作传感器 { if(i002 == 3) { HAL_GPIO_WritePin(GPIOB,con02_uart3_xieyoufa_Pin,GPIO_PIN_RESET);// delay_sys_us(80); #if 0 if((XYF_TxBuf[0] == 0x0D)&&(XYF_TxBuf[0] == 0x0A)) HAL_UART_Transmit(&huart3,XYF_TxBuf,12,100); else HAL_UART_Transmit(&huart3,XYF_TxBuf,8,100); delay_sys_us(80); #else HAL_UART_Transmit_IT(&huart3,XYF_TxBuf,Uart_len_TouChuan); while (huart3.gState == HAL_UART_STATE_BUSY_TX) { osDelay(1); } #endif HAL_GPIO_WritePin(GPIOB,con02_uart3_xieyoufa_Pin,GPIO_PIN_SET); // } else if(i002 == 0x06) { #if 0 HAL_GPIO_WritePin(GPIOB,con02_uart3_xieyoufa_Pin,GPIO_PIN_RESET);// delay_sys_us(80); HAL_UART_Transmit(&huart3,ALL_TxBuf,16,100); delay_sys_us(80); HAL_GPIO_WritePin(GPIOB,con02_uart3_xieyoufa_Pin,GPIO_PIN_SET);// } else if(i002 == 0x09)//slm 0x0c { HAL_GPIO_WritePin(GPIOB,con02_uart3_xieyoufa_Pin,GPIO_PIN_RESET);// delay_sys_us(80); HAL_UART_Transmit(&huart3,ALL_TxBuf,Uart_len_TouChuan,100); delay_sys_us(80); HAL_GPIO_WritePin(GPIOB,con02_uart3_xieyoufa_Pin,GPIO_PIN_SET);// #endif pkzq->USE_XYF = 0; i002 = 0; } i002++; if((flagU3Rx==1) && (i002 > 3)) { pkzq->USE_XYF = 0; i002 = 0; continue; } } //来自UART3的命令 电路板上标志位卸油阀 if(flagU3Rx==1) { flagU3Rx=0; #if 0 if(USART3_RX_BUF002[0]!=0x11) { pxyf[1].XYF_ErrorCnt++; if(pxyf[1].XYF_ErrorCnt>35) { pxyf[1].XYF_Error = 1; } } if(USART3_RX_BUF002[0]!=0x12) { pxyf[2].XYF_ErrorCnt++; if(pxyf[2].XYF_ErrorCnt>35) { pxyf[2].XYF_Error = 1; } } #endif if(USART3_RX_BUF002[0] >= 0x10 && USART3_RX_BUF002[0] <= 0x1F) //卸油阀数据 { ModbusCRC = USART3_RX_BUF002[5]<<8; ModbusCRC |= USART3_RX_BUF002[6]; //pxyf[USART3_RX_BUF002[0]-0x10].RTData_Num = 1; if(USART3_RX_BUF002[1]!=0x03&&USART3_RX_BUF002[1]!=0x06) //校验读写属性 { receive_error = 1; } else if(USART3_RX_BUF002[2] != 0x02) //校验数据长度 { receive_error = 1; } else if(ModbusCRC != LIB_CRC_MODBUS(USART3_RX_BUF002,5)) //校验CRC { receive_error = 1; } if(receive_error == 0) { pxyf[USART3_RX_BUF002[0]-0x10].XYF_ErrorCnt = 0; pxyf[USART3_RX_BUF002[0]-0x10].XYF_Error = 0; if(USART3_RX_BUF002[1] == 0x03) //读取数据返回 { #if 0 if(USART3_RX_BUF002[3]>0x01)//阀门开关状态 { pxyf[i].XYF_ErrorCnt++; } else if(i < XYF_BUF_DEP) { i++; } if(i == XYF_BUF_DEP) { i = 0; } #else pxyf[USART3_RX_BUF002[0] - 0x10].XYF_Data1[0] = USART3_RX_BUF002[3]; pxyf[USART3_RX_BUF002[0] - 0x10].XYF_Data2[0] = USART3_RX_BUF002[4]; #endif XYF_state(USART3_RX_BUF002[0] - 0x10); } else if(USART3_RX_BUF002[1] == 0x06) //写入数据返回 判断写入是否成功 { //清除控制器占用标志 //整理卸油阀协议后添加 } i001=3; continue; } } else if(USART3_RX_BUF002[0] >=0x70 && USART3_RX_BUF002[0] <= 0x7f) //姿态数据,目前最多支持3轴 { ModbusCRC = USART3_RX_BUF002[7]<<8; ModbusCRC |= USART3_RX_BUF002[8]; pangle->RTData_NumX = 1; if(USART3_RX_BUF002[1]!=0x03&&USART3_RX_BUF002[1]!=0x06) //校验读写属性 { receive_error = 1; } else if(USART3_RX_BUF002[2] >= 0x08) //校验数据长度 { receive_error = 1; } else if(ModbusCRC != LIB_CRC_MODBUS(USART3_RX_BUF002,USART3_RX_BUF002[2]+3)) //校验CRC { //receive_error = 1; } if(receive_error == 0) { if(USART3_RX_BUF002[1] ==0x03) { if(j < ANGLE_BUF_DEP) { pangle->Angle_ErrorCnt = 0; //if(USART3_RX_BUF002[2] == 0x02) pangle->Angle_DataX[j] = USART3_RX_BUF002[3]<<8|USART3_RX_BUF002[4]; //if(USART3_RX_BUF002[2] > 0x02) pangle->Angle_DataY[j] = USART3_RX_BUF002[5]<<8|USART3_RX_BUF002[6]; // if(USART3_RX_BUF002[2] > 0x04) pangle->Angle_DataZ[j] = USART3_RX_BUF002[7]<<8|USART3_RX_BUF002[8]; j++; } if(j == ANGLE_BUF_DEP) { j = 0; } } else { //整理卸油阀协议后添加 } } } else if(USART3_RX_BUF002[0] >= 0x20 && USART3_RX_BUF002[0] <= 0x2F ) //智能海底阀数据 { Get_ZN_hdf_data(); } else if(USART3_RX_BUF002[0] == 0xe4) //油气回收数据 { Get_Yqhuishou_data(); } else if(USART3_RX_BUF002[0] >= 0x81 && USART3_RX_BUF002[0] <= 0x8F) //壁挂油数据 { Get_Biguayou_data(); } receive_error = 0; } else { if (i001 == 2) { if(CMD_XYF[0] == 0x11) { i = xyfaddr_max; } else { i = CMD_XYF[0] - 0x11; } pxyf[i].XYF_ErrorCnt++; if (pxyf[i].XYF_ErrorCnt > pcang->sensorBusMaxReTry) { pxyf[i].XYF_ErrorCnt = pcang->sensorBusMaxReTry + 1; pxyf[i].XYF_Error = 1; } } } if(i001<15) i001++; else i001 = 0; osDelay(40); } /* USER CODE END StartTask02 */ } /* USER CODE BEGIN Header_StartTask03 */ /** * @brief Function implementing the myTask03 thread. * @param argument: Not used * @retval None */ /* USER CODE END Header_StartTask03 */ /* //发送华天三点式温度传感器命令轮询 //发送人控大盖盖命令轮询 //雷达液位传感器命令 //发送小盖传感器轮询 //发送磁致伸缩液位计命令轮询 ? */ #include "rkg.h" void StartTask03(void *argument) //人孔盖总线传感器 UART1 { /* USER CODE BEGIN StartTask03 */ /* Infinite loop */ /* USER CODE BEGIN StartTask02 */ static uint8_t i001=0,i002 = 0,i003 = 0,receive_error = 0; uint16_t rkgaddr_max = 0,temaddr_max = 0,leveladdr_max = 0,RKG_angle = 0; static uint16_t i = 0,rkdg_cnt = 0,rkxg_cnt = 0,level_cnt = 0,tem_cnt = 0,temp_dot_cnt=0,temp_dot_dex=0,ModbusCRC = 0,ModbusCRC1 = 0; uint16_t rx_len,head = 0; S_ANGLEDATA* psATsk3 = gs_AngleData; KZQ_Inf* pkzq = &kzq_inf; RKG_Inf* prkg = rkg_inf; Cang_Inf* pcang = &cang_inf; Level_Inf* plevel = level_inf; TEM_Inf* ptem = tem_inf; typedef union{ float QDGH_data_temp; //青鸟贵和磁致伸缩液位温度一体传感器 uint8_t arr[4]; }Hex_to_float; static Hex_to_float hex_to_float; leveladdr_max=0; if(pcang->Temperture==2) pcang->Temperture=3; for(i = 0;i < pcang->Cang_Num;i++) { rkgaddr_max += pcang->RKG_Num[i]; //人孔盖最大地址 leveladdr_max++; } /*if(pcang->RKG_Type==0) { rkgaddr_max += 1; }*/ //if(((pcang->Level)|0xff) == 0) { if(((pcang->Temperture)&0xff) == 0) { temaddr_max = leveladdr_max; //温度最大集成地址 } else { temaddr_max = leveladdr_max*(pcang->Temperture&0xff); //温度最大离散地址 } } i = 0; extern uint8_t USART1_RX_BUF002[Uart2_BUF_SIZE]; extern int data_lengthU1; extern int flagU1Rx; extern uint8_t USART1_RX_BUF002_print[Uart1_BUF_SIZE]; /* Infinite loop */ for(;;) { osDelay(10); //以ms为单位 //HAL_GPIO_TogglePin(GPIOA,GPIO_PIN_0); //已经移至task12 500ms闪烁 邵磊明修改 HAL_GPIO_TogglePin(WDI_sp706_kanmemgou_GPIO_Port, WDI_sp706_kanmemgou_Pin); if(Flash_Change) { rkgaddr_max = 0; leveladdr_max=0; if(pcang->Temperture==2) pcang->Temperture=3; for(i = 0;i < pcang->Cang_Num;i++) { rkgaddr_max += pcang->RKG_Num[i]; //人孔盖最大地址 leveladdr_max++; } /*if(pcang->RKG_Type==0) { rkgaddr_max += 1; }*/ //if(((pcang->Level>)|0xff) == 0) { if(((pcang->Temperture)&0xff) == 0) { temaddr_max = leveladdr_max; //温度最大集成地址 } else { temaddr_max = leveladdr_max*(pcang->Temperture&0xff); //温度最大离散地址 } } Flash_Change = 0; } if(pkzq->USE_RKG == 0) //平台未控制卸油阀总线,正常轮询数据 { if(i001==0) //发送人控大盖盖命令轮询 { if((pcang->RKG_DG != 0) && (pcang->RKG_Type!=2)) { if(pcang->RKG_Type == 0) { if(CMD_RKG[0] == 0x1) { if(i003 >= rkgaddr_max) i003 = 0; ++i003; CMD_RKG[0] = 1+i003*2; prkg[i003].RTData_Num++; } else { CMD_RKG[0] = 0x1; prkg[0].RTData_Num++; } } else { prkg[CMD_RKG[0] - 0x30].RTData_Num++; if(CMD_RKG[0] - 0x30 < rkgaddr_max) { ++i003; CMD_RKG[0]=0x30+i003; } else { CMD_RKG[0] = 0x31; i003 = 1; } } ModbusCRC = LIB_CRC_MODBUS(CMD_RKG,6); CMD_RKG[6] = ModbusCRC>>8; CMD_RKG[7] = ModbusCRC&0xff; HAL_GPIO_WritePin(GPIOB,Con01_uart1_rankonggai_Pin,GPIO_PIN_RESET);// delay_sys_us(80); //if(pcang->RKG_Type == 0x01) // HAL_UART_Transmit(&huart1,Data_Head,2,10); { HAL_UART_Transmit_IT(&huart1,CMD_RKG,8); while (huart1.gState == HAL_UART_STATE_BUSY_TX) { osDelay(1); } } //HAL_UART_Transmit(&huart1,CMD_RKG,8,100); //if(pcang->RKG_Type == 0x01) // HAL_UART_Transmit(&huart1,Data_Head,2,10); //delay_sys_us(80); HAL_GPIO_WritePin(GPIOB,Con01_uart1_rankonggai_Pin,GPIO_PIN_SET);// #if 0 if(prkg[CMD_RKG[0] - 0x30].RTData_Num > RT_ERRORCNT) //每个传感器每发送一帧 基准角度为0x30 { prkg[CMD_RKG[0] - 0x30].RTData_Num = RT_ERRORCNT; prkg[CMD_RKG[0] - 0x30].RKDG_ErrorCnt = RT_ERRORCNT; } else #endif } else i001 = 3; } if(i001==3) //发送小盖传感器轮询 { if(pcang->RKG_XG == 0x01) { ModbusCRC = LIB_CRC_MODBUS(CMD_RKG_XG,6); CMD_RKG_XG[6] = ModbusCRC>>8; CMD_RKG_XG[7] = ModbusCRC&0xff; HAL_GPIO_WritePin(GPIOB,Con01_uart1_rankonggai_Pin,GPIO_PIN_RESET);// delay_sys_us(80); if(pcang->RKG_Type == 0x01) HAL_UART_Transmit(&huart1,Data_Head,2,10); HAL_UART_Transmit(&huart1,CMD_RKG_XG,8,100); if(pcang->RKG_Type == 0x01) HAL_UART_Transmit(&huart1,Data_Head,2,10); delay_sys_us(80); HAL_GPIO_WritePin(GPIOB,Con01_uart1_rankonggai_Pin,GPIO_PIN_SET);// if(prkg[CMD_RKG_XG[0]-0x40].RTData_Num > RT_ERRORCNT) { prkg[CMD_RKG_XG[0]-0x40].RTData_Num = RT_ERRORCNT; prkg[CMD_RKG_XG[0]-0x40].RKXG_ErrorCnt = RT_ERRORCNT; } else prkg[CMD_RKG_XG[0]-0x40].RTData_Num++; //每个传感器发送帧累加 if(CMD_RKG_XG[0] - 0x41 < rkgaddr_max -1) CMD_RKG_XG[0]++; else CMD_RKG_XG[0] = 0x41; } else i001 = 6; } if(i001==6) //发送磁致伸缩液位计命令轮询 邵磊明增加 { if(pcang->Level == 0) //没有液位传感器 { i001=9; } else if(pcang->Level == 1) //磁致伸缩传感器轮询 邵磊明增加 { ModbusCRC = LIB_CRC_MODBUS(CMD_GetTempAndYewei,6); CMD_GetTempAndYewei[6] = ModbusCRC>>8; CMD_GetTempAndYewei[7] = ModbusCRC&0xff; HAL_GPIO_WritePin(GPIOB,Con01_uart1_rankonggai_Pin,GPIO_PIN_RESET);// delay_sys_us(80); //HAL_UART_Transmit(&huart1,CMD_GetTempAndYewei,8,100); //delay_sys_us(80); HAL_UART_Transmit_IT(&huart1,CMD_GetTempAndYewei,8); while (huart1.gState == HAL_UART_STATE_BUSY_TX) { osDelay(1); } HAL_GPIO_WritePin(GPIOB,Con01_uart1_rankonggai_Pin,GPIO_PIN_SET);// /*if(plevel[CMD_GetTempAndYewei[0]-0x50].RTData_Num > RT_ERRORCNT) { plevel[CMD_GetTempAndYewei[0]-0x50].RTData_Num = RT_ERRORCNT; plevel[CMD_GetTempAndYewei[0]-0x50].Level_ErrorCnt = RT_ERRORCNT; } else*/ plevel[CMD_GetTempAndYewei[0]-0x50].RTData_Num++; //每个传感器发送帧累加 基准角度为0x30 if(CMD_GetTempAndYewei[0]-0x50 < leveladdr_max) CMD_GetTempAndYewei[0]++; else CMD_GetTempAndYewei[0] = 0x51; } else if(pcang->Level == 2) //雷达液位传感器命令轮询 20210818邵增加 { ModbusCRC = LIB_CRC_MODBUS(CMD_LDYW,6); CMD_LDYW[6] = ModbusCRC>>8; CMD_LDYW[7] = ModbusCRC&0xff; HAL_GPIO_WritePin(GPIOB,Con01_uart1_rankonggai_Pin,GPIO_PIN_RESET);// delay_sys_us(80); //HAL_UART_Transmit(&huart1,CMD_LDYW,8,100); //delay_sys_us(80); HAL_UART_Transmit_IT(&huart1, CMD_LDYW, 8); while (huart1.gState == HAL_UART_STATE_BUSY_TX) { osDelay(1); } HAL_GPIO_WritePin(GPIOB, Con01_uart1_rankonggai_Pin, GPIO_PIN_SET); // /*if (prkg[CMD_RKG[0] - 0x50].RTData_Num > RT_ERRORCNT) //每个传感器每发送一帧 基准角度为0x30 { plevel[CMD_RKG[0] - 0x50].RTData_Num = RT_ERRORCNT; plevel[CMD_RKG[0] - 0x50].Level_ErrorCnt = RT_ERRORCNT; } else*/ plevel[CMD_LDYW[0] - 0x50].RTData_Num++; if (CMD_LDYW[0] - 0x50 < leveladdr_max) CMD_LDYW[0]++; else CMD_LDYW[0] = 0x51; } else i001=9; } if(i001==9) //发送华天三点式温度传感器命令轮询 邵磊明增加 { if(pcang->Temperture != 0) { // taskENTER_CRITICAL(); ModbusCRC = LIB_CRC_MODBUS(CMD_GetTempHuaTian,6); CMD_GetTempHuaTian[6] = ModbusCRC>>8; CMD_GetTempHuaTian[7] = ModbusCRC&0xff; HAL_GPIO_WritePin(GPIOB,Con01_uart1_rankonggai_Pin,GPIO_PIN_RESET);// delay_sys_us(80); HAL_UART_Transmit_IT(&huart1,CMD_GetTempHuaTian,8); while (huart1.gState == HAL_UART_STATE_BUSY_TX) { osDelay(1); } //HAL_UART_Transmit(&huart1,CMD_GetTempHuaTian,8,100); //delay_sys_us(80); HAL_GPIO_WritePin(GPIOB,Con01_uart1_rankonggai_Pin,GPIO_PIN_SET);// // taskEXIT_CRITICAL(); #if 0 if(ptem[CMD_GetTempHuaTian[0] - 0x60].RTData_Num > RT_ERRORCNT) //每个传感器每发送一帧 基准角度为0x30 { ptem[CMD_GetTempHuaTian[0] - 0x60].RTData_Num = RT_ERRORCNT; ptem[CMD_GetTempHuaTian[0] - 0x60].TEM_ErrorCnt = RT_ERRORCNT; } else #endif { ptem[CMD_GetTempHuaTian[0] - 0x60].RTData_Num++; } if(CMD_GetTempHuaTian[0] - 0x60 < temaddr_max) CMD_GetTempHuaTian[0] = CMD_GetTempHuaTian[0]+1; else CMD_GetTempHuaTian[0] = 0x61; } else { i001=0x0; continue; } } } else //平台通过卸油阀总线直接操作传感器 { if(i002 == 3) { extern uint16_t Uart_len_TouChuan; HAL_GPIO_WritePin(GPIOB,Con01_uart1_rankonggai_Pin,GPIO_PIN_RESET);// delay_sys_us(80); #if 0 if((RKG_TxBuf[0] == 0x0D)&&(RKG_TxBuf[1] == 0x0A)) HAL_UART_Transmit(&huart1,RKG_TxBuf,12,100); else HAL_UART_Transmit(&huart1,RKG_TxBuf,8,100); delay_sys_us(80); #else HAL_UART_Transmit_IT(&huart1,RKG_TxBuf,Uart_len_TouChuan); while (huart1.gState == HAL_UART_STATE_BUSY_TX) { osDelay(1); } #endif HAL_GPIO_WritePin(GPIOB,Con01_uart1_rankonggai_Pin,GPIO_PIN_SET);// flagU1Rx=0; } i002++; if(((flagU1Rx==1) && (i002 > 3)) || i002>10) { pkzq->USE_RKG = 0; i002 = 0; continue; } } //来自UART1,即人孔盖总线的命令 电路板上标志位人孔盖 if(flagU1Rx==1) { flagU1Rx = 0; receive_error = 0; rx_len = USART1_RX_BUF002[2]; ModbusCRC = USART1_RX_BUF002[(3+rx_len)]<<8; ModbusCRC |= USART1_RX_BUF002[(3+rx_len+1)]; if((USART1_RX_BUF002[head+0] >= 0x30 && USART1_RX_BUF002[head+0] <= 0x3F) || (USART1_RX_BUF002[head+0] >= 0x1 && USART1_RX_BUF002[head+0] <= 0x10)) //人孔大盖数据 地址0x30为基准传感器 { if(USART1_RX_BUF002[head+1]!=0x03&&USART1_RX_BUF002[head+1]!=0x06) //校验读写属性 { receive_error = 1; } else if(USART1_RX_BUF002[head+2] != 0x04) //校验数据长度 { receive_error = 1; } else if(ModbusCRC != LIB_CRC_MODBUS(USART1_RX_BUF002,7)) //校验CRC { receive_error = 1; } // if((pcang->RKG_Type == 0)&&(USART1_RX_BUF002[head]>=0x30)&&(USART1_RX_BUF002[head] <=0x4F)) RKG_angle = (USART1_RX_BUF002[head+4]<<8)|USART1_RX_BUF002[head+3]; // else // RKG_angle = (USART1_RX_BUF002[head+3]<<8)|USART1_RX_BUF002[head+4]; if((USART1_RX_BUF002[head+1] == 0x03)&&(receive_error == 0)) //读取数据返回 {//童赟 磁电编码 磁编码 人孔盖 if(USART1_RX_BUF002[head]==1) { prkg[0].RKDG_ErrorCnt = 0; prkg[0].RKDG_Error=0; } else { prkg[i003].RKDG_ErrorCnt = 0; prkg[i003].RKDG_Error=0; } if(USART1_RX_BUF002[head]==1) { AGL_AddNewData(RKG_angle,0); } else { AGL_AddNewData(RKG_angle,i003); } #if 0 //邵磊明修改 20211027 从rkg.c剪切到此处 if(psATsk3[i003].uiDG < 0 ||psATsk3[USART1_RX_BUF002[head]-0x30].uiDG >= 27000)//角度 { prkg[USART1_RX_BUF002[head]-0x30].RKDG_ErrorCnt++; } #endif // if( - psATsk3[USART1_RX_BUF002[head]-0x30].uiDG > prkg->RKG_Threshold || psATsk3[USART1_RX_BUF002[head]-0x30].uiDG > prkg->RKG_Threshold) // prkg[USART1_RX_BUF002[head]-0x30].RKDG_StateCnt++; // else // prkg[USART1_RX_BUF002[head]-0x30].RKDG_StateCnt = 0; if(pcang->RKG_Type == 0) { AGL_CalcDeltaAll(USART1_RX_BUF002[head],0); } #if 0 //倾角大盖计算 if(rkdg_cnt < RKG_BUF_DEP) { if(USART1_RX_BUF002[head] == 0x30) { prkg[USART1_RX_BUF002[head] - 0x30].RKG_JZData[rkdg_cnt] = RKG_angle; } else { prkg[USART1_RX_BUF002[head] - 0x30].RKG_DGData[rkdg_cnt] = RKG_angle; rkdg_cnt++; } } if(rkdg_cnt == RKG_BUF_DEP) { rkdg_cnt = 0; } #endif //李伟修改 20211027 从rkg.c剪切到此处;开始 if (USART1_RX_BUF002[head] != 1) { if (psATsk3[i003].uiDG >= 0 || psATsk3[i003].uiDG <= 27000) //角度 { if (-psATsk3[i003].uiDG > prkg->RKG_Threshold || psATsk3[i003].uiDG > prkg->RKG_Threshold) prkg[i003].RKDG_StateCnt++; else prkg[i003].RKDG_StateCnt = 0; if (prkg[i003].RKDG_StateCnt >= prkg[i003].RKG_StateKeepNum) { // RisingEdge++; prkg[i003].RKDG_StateCnt = prkg[i003].RKG_StateKeepNum; prkg[i003].RKDG_State = 1; } else { prkg[i003].RKDG_State = 0; } } } //李伟修改 20211027 从rkg.c剪切到此处;开始 i001 = 3; continue; } } else if(USART1_RX_BUF002[head+0] >= 0x40 && USART1_RX_BUF002[head+0] <= 0x4F) //人孔小盖数据 地址0x30为基准传感器 { prkg[USART1_RX_BUF002[head] - 0x30].RKXG_ErrorCnt = 0; prkg[USART1_RX_BUF002[head+0]-0x40].RTData_Num = 1; if(USART1_RX_BUF002[head+1]!=0x03&&USART1_RX_BUF002[head+1]!=0x06) //校验读写属性 { receive_error = 1; } else if(USART1_RX_BUF002[head+2] != 0x04) //校验数据长度 { receive_error = 1; } else if(ModbusCRC != LIB_CRC_MODBUS(USART1_RX_BUF002,7)) //校验CRC { receive_error = 1; } if((USART1_RX_BUF002[head+1] == 0x03)&&(receive_error == 0)) //读取数据返回 { AGL_AddNewData((USART1_RX_BUF002[head+3]<<8)|USART1_RX_BUF002[head+4],USART1_RX_BUF002[head]); if(rkxg_cnt < RKG_BUF_DEP) { prkg[USART1_RX_BUF002[head] - 0x40].RKG_XGData[rkxg_cnt] = USART1_RX_BUF002[head+4]<<8; prkg[USART1_RX_BUF002[head] - 0x40].RKG_XGData[rkxg_cnt] |= USART1_RX_BUF002[head+3]; rkxg_cnt++; } if(rkxg_cnt == RKG_BUF_DEP) { rkxg_cnt = 0; } } else if((USART1_RX_BUF002[head+1] == 0x06)&&(receive_error == 0)) //写入数据返回 { } i001 = 6; continue; } else if(USART1_RX_BUF002[0] >= 0x50 && USART1_RX_BUF002[0] <= 0x5F) //液位计数据 邵磊明增加 { if(pcang->Level == 1) //磁致伸缩传感器接收数据 邵磊明增加 { plevel[USART1_RX_BUF002[0]-0x50].RTData_Num = 1;//液位计信息数量 plevel[USART1_RX_BUF002[0]-0x50].Level_ErrorCnt = 0; if(USART1_RX_BUF002[1]!=0x04) //校验功能码USART1_RX_BUF002[1]!=0x04&&.. { receive_error = 1; } else if(USART1_RX_BUF002[2] != 0x20) //校验数据长度 { receive_error = 1; } else if(ModbusCRC != LIB_CRC_MODBUS(USART1_RX_BUF002,35)) //校验CRC { receive_error = 1; } if((USART1_RX_BUF002[head+1] == 0x04)&&(receive_error == 0)) //读取返回雷达数据 slm { hex_to_float.arr[0] = USART1_RX_BUF002[5]; hex_to_float.arr[1] = USART1_RX_BUF002[6]; hex_to_float.arr[2] = USART1_RX_BUF002[3]; hex_to_float.arr[3] = USART1_RX_BUF002[4]; plevel[USART1_RX_BUF002[head]-0x50].Level_Data = hex_to_float.QDGH_data_temp; hex_to_float.arr[0] = USART1_RX_BUF002[13]; hex_to_float.arr[1] = USART1_RX_BUF002[14]; hex_to_float.arr[2] = USART1_RX_BUF002[11]; hex_to_float.arr[3] = USART1_RX_BUF002[12]; plevel[USART1_RX_BUF002[head]-0x50].Avr_temp = hex_to_float.QDGH_data_temp; hex_to_float.arr[0] = USART1_RX_BUF002[17]; hex_to_float.arr[1] = USART1_RX_BUF002[18]; hex_to_float.arr[2] = USART1_RX_BUF002[15]; hex_to_float.arr[3] = USART1_RX_BUF002[16]; plevel[USART1_RX_BUF002[head]-0x50].Avr_temp = hex_to_float.QDGH_data_temp; hex_to_float.arr[0] = USART1_RX_BUF002[21]; hex_to_float.arr[1] = USART1_RX_BUF002[22]; hex_to_float.arr[2] = USART1_RX_BUF002[19]; hex_to_float.arr[3] = USART1_RX_BUF002[20]; plevel[USART1_RX_BUF002[head]-0x50].Bdot_temp = hex_to_float.QDGH_data_temp; hex_to_float.arr[0] = USART1_RX_BUF002[25]; hex_to_float.arr[1] = USART1_RX_BUF002[26]; hex_to_float.arr[2] = USART1_RX_BUF002[23]; hex_to_float.arr[3] = USART1_RX_BUF002[24]; plevel[USART1_RX_BUF002[head]-0x50].Cdot_temp = hex_to_float.QDGH_data_temp; } else if((USART1_RX_BUF002[head+1] == 0x06)&&(receive_error == 0)) //写入数据返回 { } } else if(pcang->Level == 2) //雷达液位传感器接收数据 邵磊明增加 { plevel[USART1_RX_BUF002[0]-0x50].RTData_Num = 1;//液位计信息数量 plevel[USART1_RX_BUF002[0]-0x50].Level_ErrorCnt = 0; if(USART1_RX_BUF002[1]!=0x04) //校验功能码USART1_RX_BUF002[1]!=0x04&&.. { receive_error = 1; } else if(USART1_RX_BUF002[2] != 0x04) //校验数据长度 { receive_error = 1; } else if(ModbusCRC != LIB_CRC_MODBUS(USART1_RX_BUF002,7)) //校验CRC { receive_error = 1; } pcang->CRC1 = LIB_CRC_MODBUS(USART1_RX_BUF002,7); if((USART1_RX_BUF002[head+1] == 0x04)&&(receive_error == 0)) //读取返回雷达数据 slm {//液位计数据 液位仪数据 hex_to_float.arr[0] = USART1_RX_BUF002[4]; hex_to_float.arr[1] = USART1_RX_BUF002[3]; hex_to_float.arr[2] = USART1_RX_BUF002[6]; hex_to_float.arr[3] = USART1_RX_BUF002[5]; plevel[USART1_RX_BUF002[head]-0x50].Level_Data = hex_to_float.QDGH_data_temp; } else if((USART1_RX_BUF002[head+1] == 0x06)&&(receive_error == 0)) //写入数据返回 { } } i001 = 9; continue; } else if(USART1_RX_BUF002[0] >=0x60 && USART1_RX_BUF002[0] <= 0x6f) //华天三点式温度传感器接收数据 邵磊明增加 { ptem[CMD_GetTempHuaTian[0] - 0x60].RTData_Num = 1;//三点测温 ptem[CMD_GetTempHuaTian[0] - 0x60].TEM_ErrorCnt = 0; if(USART1_RX_BUF002[1]!=0x03&&USART1_RX_BUF002[1]!=0x06) //校验读写属性 { receive_error = 1; } else if(USART1_RX_BUF002[2] != 0x02) //校验数据长度 { receive_error = 1; } else if(ModbusCRC != LIB_CRC_MODBUS(USART1_RX_BUF002,5)) //校验CRC { receive_error = 1; } else if((USART1_RX_BUF002[head+1] == 0x03)&&(receive_error == 0)) { if(pcang->Temperture==1) //1点 { ptem[USART1_RX_BUF002[head]-0x60].TEM_HData[1] = USART1_RX_BUF002[3]<<8|USART1_RX_BUF002[4]; ptem[USART1_RX_BUF002[head]-0x60].TEM_MData[1] = USART1_RX_BUF002[3]<<8|USART1_RX_BUF002[4]; ptem[USART1_RX_BUF002[head]-0x60].TEM_LData[1] = USART1_RX_BUF002[3]<<8|USART1_RX_BUF002[4]; } else if(pcang->Temperture==3) //1点 { i = USART1_RX_BUF002[head]-0x61; switch (i%3) { case 0: ptem[(i/3)+1].TEM_HData[1] = USART1_RX_BUF002[3]<<8|USART1_RX_BUF002[4]; break; case 1: ptem[(i/3)+1].TEM_MData[1] = USART1_RX_BUF002[3]<<8|USART1_RX_BUF002[4]; break; case 2: ptem[(i/3)+1].TEM_LData[1] = USART1_RX_BUF002[3]<<8|USART1_RX_BUF002[4]; break; default: break; } } #if 0 switch(USART1_RX_BUF002[head])//pcang->Temperture&0xFF { case 0x61: ptem[USART1_RX_BUF002[head]-0x60].TEM_HData[1] = USART1_RX_BUF002[3]<<8|USART1_RX_BUF002[4]; break; case 0x62: ptem[USART1_RX_BUF002[head]-0x61].TEM_MData[1] = USART1_RX_BUF002[3]<<8|USART1_RX_BUF002[4]; break; case 0x63: ptem[USART1_RX_BUF002[head]-0x62].TEM_LData[1] = USART1_RX_BUF002[3]<<8|USART1_RX_BUF002[4]; break; case 0x64: ptem[USART1_RX_BUF002[head]-0x62].TEM_HData[1] = USART1_RX_BUF002[3]<<8|USART1_RX_BUF002[4]; break; case 0x65: ptem[USART1_RX_BUF002[head]-0x63].TEM_MData[1] = USART1_RX_BUF002[3]<<8|USART1_RX_BUF002[4]; break; case 0x66: ptem[USART1_RX_BUF002[head]-0x64].TEM_LData[1] = USART1_RX_BUF002[3]<<8|USART1_RX_BUF002[4]; break; default: break; } #endif } i001 = 0; continue; } else if(0) //暂未使用 { } else if(0) //暂未使用 { } } else { if (i001 == 2) { if(pcang->RKG_Type == 0) { if(CMD_RKG[0] == 0x1) { i = 0; } else { i = i003; } } else { if(CMD_RKG[0] == 0x31) { i = rkgaddr_max; } else { i = CMD_RKG[0] - 0x31; } } prkg[i].RKDG_ErrorCnt++; if (prkg[i].RKDG_ErrorCnt > pcang->sensorBusMaxReTry) { prkg[i].RKDG_ErrorCnt = pcang->sensorBusMaxReTry + 1; prkg[i].RKDG_Error = 1; } } if (i001 == 8) //液位错误 { if(pcang->Level == 1) { i = CMD_GetTempAndYewei[0]; } else if(pcang->Level == 2) { i = CMD_LDYW[0]; } if(pcang->Level) { if(i==0x51) { i = leveladdr_max; } else { i = i - 0x51; } plevel[i].Level_ErrorCnt++; } } } if(i001<0x0c) i001++; else i001 = 0; osDelay(40); } /* USER CODE END StartTask03 */ } /* USER CODE BEGIN Header_StartTask04 */ /** * @brief Function implementing the myTask04 thread. * @param argument: Not used * @retval None */ #include "Data_deal.h" uint8_t USART2_RX_BUF003[128]; uint8_t F_STATE[70] = {0}; uint8_t ptxCang01Temp[150]; uint32_t KZQ_RTerror = 0; /* USER CODE END Header_StartTask04 */ void StartTask04(void *argument) //控制器数据处理 uart2 { /* USER CODE BEGIN StartTask04 */ /* Infinite loop */ uint8_t* ptx = CMD_KZQ; uint16_t ModbusCRC = 0,SetSuccess = 0,ModbusCRC1 = 0,SetSuccess1 = 0,SetSuccess2=0,SetSuccess3=0; static uint16_t i = 0; int i000; uint8_t* send_ptr; uint16_t send_len; uint32_t tmpU32; KZQ_Inf* pkzq = &kzq_inf; extern uint8_t USART2_RX_BUF002[Uart2_BUF_SIZE]; extern int data_lengthU2; extern int flagU2Rx; extern uint8_t USART2_RX_BUF002_print[Uart2_BUF_SIZE]; /* Infinite loop */ for(;;) { osDelay(50); //以ms为单位 // HAL_GPIO_TogglePin(GPIOA,GPIO_PIN_0); HAL_GPIO_TogglePin(WDI_sp706_kanmemgou_GPIO_Port, WDI_sp706_kanmemgou_Pin); if (flagU2Rx == 1) { flagU2Rx = 0; if ((rx1_len > 300) || ((USART2_RX_BUF002[0] == 0xa5) && (USART2_RX_BUF002[1] == 0x5a))) { tmpU32 = (USART2_RX_BUF002[0] << 24) | (USART2_RX_BUF002[1] << 16) | (USART2_RX_BUF002[2] << 8) | (USART2_RX_BUF002[3]); if (StartBytes_IAP == tmpU32) { Process_CMD_IAP_Update(); continue; } } // KZQ_RTerror = 0; // ASC转换为16进制,收到数据为:3901开头的数据总长度131字节 if ((USART2_RX_BUF002[0] == 0x3A) && (USART2_RX_BUF002[1] == 0x33) && (USART2_RX_BUF002[2] == 0x39) && (USART2_RX_BUF002[3] == 0x30)) //判断帧头 { if (data_lengthU2 != 131) { ++KZQ_RTerror; continue; } for (i000 = 0; i000 < (data_lengthU2 - 3) / 2; i000++) { T2C_RemoteCaliDat001.PayLoadData[i000] = MODBUS_ASCII_AsciiToHex(USART2_RX_BUF002 + 1 + 0 + i000 * 2); USART2_RX_BUF003[i000] = MODBUS_ASCII_AsciiToHex(USART2_RX_BUF002 + 1 + 0 + i000 * 2); } //解析后的数据拷贝过来 memcpy(USART2_RX_BUF002, USART2_RX_BUF003, (data_lengthU2 - 3) / 2); data_lengthU2 = (data_lengthU2 - 3) / 2; } if (data_lengthU2 < 5) continue; ModbusCRC = USART2_RX_BUF002[data_lengthU2 - 1] << 8; ModbusCRC |= USART2_RX_BUF002[data_lengthU2 - 2]; ModbusCRC1 = LIB_CRC_MODBUS(USART2_RX_BUF002, data_lengthU2 - 2); if ((USART2_RX_BUF002[0] != 0x39) && (USART2_RX_BUF002[1] <= 0x01) && (USART2_RX_BUF002[2] <= 0x95) && (USART2_RX_BUF002[3] <= 0x50)) //判断帧头 { pkzq->KZQ_Error++; KZQ_RTerror = 1; } else if (USART2_RX_BUF002[5] != 0x01) //校验地址 { pkzq->KZQ_Error++; KZQ_RTerror = 1; } else if ((USART2_RX_BUF002[7] != 0x03) && (USART2_RX_BUF002[7] != 0x06)) //校验数据长度 { pkzq->KZQ_Error++; KZQ_RTerror = 1; } /*else if(ModbusCRC != ModbusCRC1) //校验CRC { pkzq->KZQ_Error++; KZQ_RTerror = 1; }*/ else { pkzq->KZQ_Error = 0; KZQ_RTerror = 0; for (i = 0; i < 64; i++) pkzq->data_buf[i] = USART2_RX_BUF002[i]; for(i = 0;i < 16;i++) ptx[i] = USART2_RX_BUF002[i]; } if(KZQ_RTerror == 0) { pkzq->sensor_reg = USART2_RX_BUF002[8]; pkzq->sensor_reg = pkzq->sensor_reg<<8; pkzq->sensor_reg |= USART2_RX_BUF002[9]; switch(pkzq->sensor_reg) { case 0x10: RstCPU(); //复位 break; case 0x11: break; case 0x12: break; case 0x13: Sen_CangState_old(F_STATE); //老协议 传输阀门状态 break; case 0x20: SetSuccess = Read_CangState(ptx); //读取仓状态 break; case 0x21: break; case 0x22: break; case 0x23: break; case 0x24: break; case 0x25: break; case 0x26: break; case 0x27: SetSuccess = Read_CangSensorData(ptx); //读取仓传感器 break; case 0x28: break; case 0x29: break; case 0x40: SetSuccess = Angle_SetZero(ptx); //姿态传感器置零 for(i = 0;i < 64;i++) ptx[i] = USART2_RX_BUF002[i]; break; case 0x41: break; case 0x42: break; case 0x43: break; case 0x50: SetSuccess = XYF_SetOFF(ptx); //远程卸油阀标定关 slm for(i = 0;i < 64;i++) ptx[i] = USART2_RX_BUF002[i]; break; case 0x51: SetSuccess = XYF_SetThreshold(ptx); //设置卸油阀传感器开关门限 break; case 0x52: SetSuccess = RKG_SetZero(ptx); //人孔盖传感器置零 for(i = 0;i < 64;i++) ptx[i] = USART2_RX_BUF002[i]; break; case 0x53: break; case 0x54: break; case 0x55: SetSuccess = Read_Sensor(ptx); // 远程读取传感器数据 slm break; case 0x70: break; case 0x71: SetSuccess = BGY_SetThreshold(ptx); //设置壁挂油门限 break; case 0x72: SetSuccess = RKG_SetThreshold(ptx); //设置人孔盖开关门限 break; case 0x73: SetSuccess = Sensor_SetJudgefNum(ptx); //设置开关判断次数 break; case 0x74: SetSuccess = CJQ_SetConfig(ptx); //设置采集器参数 Flash_Change = 1; break; case 0x75: SetSuccess = RKG_SetTypeNum(ptx); //设置人孔盖种类、数量 Flash_Change = 1; break; case 0x76: SetSuccess = XYF_SetTypeNum(ptx); //设置卸油阀种类、数量 Flash_Change = 1; break; case 0x77: SetSuccess = HDF_SetTypeNum(ptx); //设置海底阀种类、数量 Flash_Change = 1; break; case 0x78: SetSuccess = Level_SetType(ptx); //设置液位计种类 Flash_Change = 1; break; case 0x79: SetSuccess = Angle_SetType(ptx); //设置姿态传感器种类 Flash_Change = 1; break; case 0x7a: SetSuccess = Tem_SetType(ptx); //设置温度传感器种类 // Flash_Change = 1; break; case 0x7b: HDF_Set_CloseVal(ptx); //设置智能海底阀放大倍数 Flash_Change = 1; break; case 0x7c: HDF_Set_Threshold(ptx); //设置智能海底阀放大倍数 Flash_Change = 1; break; case 0x7d: HDF_Set_Gain(ptx); //设置智能海底阀放大倍数 Flash_Change = 1; break; case 0x7e: HDF_Reset(ptx); //设置智能海底阀放大倍数 Flash_Change = 1; break; case 0x80: SetSuccess = RW_SensorBusMaxRetry(ptx); //传感器总线重试最大值来获取异常 break; case 0x017e: TOUCHUAN_UART_NUM(ptx); //设置智能海底阀放大倍数 Flash_Change = 1; break; case 0x0180: SetSuccess = GRB_SET_Table(ptx); //罐容表配置 邵磊明增加 Flash_Change = 1; break; case 0x0190: SetSuccess = Level_SetCalvalue(ptx); //设置液位计零点 邵磊明增加 Flash_Change = 1; case 0x0121: //SetSuccess = Level_SetCalvalue(ptx); //设置液位计种类 // Flash_Change = 1; break; case 0x0122://SetSuccess = Level_SetCalvalue(ptx); //设置液位计种类 // Flash_Change = 1; break; case 0x0220: SetSuccess=Read_SoftVersion(ptx); break; case 0x1121: SetSuccess1 = Read_CangSensorData_1to4(ptx); //读仓1-4传感器 break; case 0x1193: SetSuccess2 = Read_CangSensorData_1(ptx); //读仓1传感器 break; case 0x1194: SetSuccess2 = Read_CangSensorData_2(ptx); //读仓2传感器 break; case 0x1195: SetSuccess2 = Read_CangSensorData_3(ptx); //读仓3传感器 break; case 0x1196: SetSuccess2 = Read_CangSensorData_4(ptx); //读仓4传感器 break; case 0x1197: SetSuccess2 = Read_CangSensorData_5(ptx); //读仓5传感器 break; case 0x1198: SetSuccess2 = Read_CangSensorData_6(ptx); //读仓6传感器 break; case 0x1199: SetSuccess2 = Read_CangSensorData_7(ptx); //读仓7传感器 break; case 0x119a: SetSuccess2 = Read_CangSensorData_8(ptx); //读仓8传感器 break; case 0x119b: SetSuccess3 = Read_ZhencheSensorData1(ptx); //读仓1-4传感器 break; default: break; } send_len=0; if(pkzq->sensor_reg == 0x13) { send_ptr = F_STATE; send_len = 62; } else if(SetSuccess2) { SetSuccess2=0; send_ptr = ptx; send_len = 148; } else if(SetSuccess3) { SetSuccess3=0; send_ptr = ptx; send_len = 96; } else if(SetSuccess1) { SetSuccess1=0; ptx[232] = 0x00; ptx[233] = 0x00; send_ptr = ptx; send_len = 234; } else if(SetSuccess) { ptx[60] = 0x00; ptx[61] = 0x00; send_ptr = ptx; send_len = 62; } else { ptx[60] = 0xFF; ptx[61] = 0xFF; send_ptr = ptx; send_len = 62; } SetSuccess = 0; if(send_len) { ModbusCRC = LIB_CRC_MODBUS(send_ptr,send_len); send_ptr[send_len] = ModbusCRC>>8; send_ptr[send_len+1] = ModbusCRC&0xff; HAL_GPIO_WritePin(GPIOA,con03_uart2_kongzhiqi_Pin,GPIO_PIN_RESET);// delay_sys_us(80); HAL_UART_Transmit_IT(&huart2,send_ptr,send_len+2); while (huart2.gState == HAL_UART_STATE_BUSY_TX) { osDelay(1); } delay_sys_us(80); HAL_GPIO_WritePin(GPIOA,con03_uart2_kongzhiqi_Pin,GPIO_PIN_SET);// } } flagU2Rx = 0; } } /* USER CODE END StartTask04 */ } /* USER CODE BEGIN Header_StartTask05 */ /** * @brief Function implementing the myTask05 thread. * @param argument: Not used * @retval None */ /* USER CODE END Header_StartTask05 */ #include"level.h" void StartTask05(void *argument) { /* USER CODE BEGIN StartTask05 */ /* Infinite loop */ Level_Inf *plevel = level_inf; Cang_Inf *pcang = &cang_inf; uint8_t i; float v000; uint16_t *VolArrayTsk05 = Volume_1cang; const uint16_t *HArrayTsk05 = H_1cang; for (;;) { HAL_GPIO_TogglePin(WDI_sp706_kanmemgou_GPIO_Port, WDI_sp706_kanmemgou_Pin); AGL_JudgeState(); for (i = 0; i < pcang->Cang_Num+1; i++) { // Value_Manage(i); // for(uint8_t i = 0;i < 5;i++) { switch (i) { case 0: VolArrayTsk05 = Volume_1cang; HArrayTsk05 = H_1cang; break; case 1: VolArrayTsk05 = Volume_1cang; HArrayTsk05 = H_1cang; break; case 2: VolArrayTsk05 = Volume_2cang; HArrayTsk05 = H_2cang; break; case 3: VolArrayTsk05 = Volume_3cang; HArrayTsk05 = H_3cang; break; case 4: VolArrayTsk05 = Volume_4cang; HArrayTsk05 = H_4cang; break; default: VolArrayTsk05 = Volume_4cang; HArrayTsk05 = H_4cang; break; } v000 = Calc_Vol(plevel[i].Level_Data, VolArrayTsk05, HArrayTsk05, i); plevel[i].Volume_Data = v000; DF_State(i); // BGY_state(i); osDelay(100); } } } /* USER CODE END StartTask05 */ } /* USER CODE BEGIN Header_StartTask06 */ /** * @brief Function implementing the myTask06 thread. * @param argument: Not used * @retval None */ /* USER CODE END Header_StartTask06 */ void StartTask06(void *argument) { /* USER CODE BEGIN StartTask06 */ /* Infinite loop */ for(;;) { osDelay(1); } /* USER CODE END StartTask06 */ } /* USER CODE BEGIN Header_StartTask07 */ /** * @brief Function implementing the myTask07 thread. * @param argument: Not used * @retval None */ /* USER CODE END Header_StartTask07 */ void StartTask07(void *argument) { /* USER CODE BEGIN StartTask07 */ /* Infinite loop */ for(;;) { osDelay(1); } /* USER CODE END StartTask07 */ } /* USER CODE BEGIN Header_StartTask08 */ /** * @brief Function implementing the myTask08 thread. * @param argument: Not used * @retval None */ /* USER CODE END Header_StartTask08 */ void StartTask08(void *argument) { /* USER CODE BEGIN StartTask08 */ /* Infinite loop */ for(;;) { osDelay(1); } /* USER CODE END StartTask08 */ } /* USER CODE BEGIN Header_StartTask09 */ /** * @brief Function implementing the myTask09 thread. * @param argument: Not used * @retval None */ /* USER CODE END Header_StartTask09 */ void StartTask09(void *argument) { /* USER CODE BEGIN StartTask09 */ /* Infinite loop */ for(;;) { osDelay(1); } /* USER CODE END StartTask09 */ } /* USER CODE BEGIN Header_StartTask10 */ /** * @brief Function implementing the myTask10 thread. * @param argument: Not used * @retval None */ /* USER CODE END Header_StartTask10 */ void StartTask10(void *argument) { /* USER CODE BEGIN StartTask10 */ /* Infinite loop */ for(;;) { osDelay(1); } /* USER CODE END StartTask10 */ } /* USER CODE BEGIN Header_StartTask11 */ /** * @brief Function implementing the myTask11 thread. * @param argument: Not used * @retval None */ /* USER CODE END Header_StartTask11 */ void StartTask11(void *argument) { /* USER CODE BEGIN StartTask11 */ /* Infinite loop */ for(;;) { osDelay(1); } /* USER CODE END StartTask11 */ } /* USER CODE BEGIN Header_StartTask12 */ /** * @brief Function implementing the myTask12 thread. * @param argument: Not used * @retval None */ /* USER CODE END Header_StartTask12 */ void StartTask12(void *argument) { /* USER CODE BEGIN StartTask12 */ /* Infinite loop */ for(;;) { osDelay(500); usage_Tsk12++; HAL_GPIO_TogglePin(GPIOA,GPIO_PIN_0); HAL_GPIO_TogglePin(WDI_sp706_kanmemgou_GPIO_Port, WDI_sp706_kanmemgou_Pin); } /* USER CODE END StartTask12 */ } /* Callback01 function */ void Callback01(void *argument) { /* USER CODE BEGIN Callback01 */ /* USER CODE END Callback01 */ } /* Callback02 function */ void Callback02(void *argument) { /* USER CODE BEGIN Callback02 */ /* USER CODE END Callback02 */ } /* Callback03 function */ void Callback03(void *argument) { /* USER CODE BEGIN Callback03 */ /* USER CODE END Callback03 */ } /* Callback04 function */ void Callback04(void *argument) { /* USER CODE BEGIN Callback04 */ /* USER CODE END Callback04 */ } /* Callback05 function */ void Callback05(void *argument) { /* USER CODE BEGIN Callback05 */ /* USER CODE END Callback05 */ } /* Callback06 function */ void Callback06(void *argument) { /* USER CODE BEGIN Callback06 */ /* USER CODE END Callback06 */ } /* Callback07 function */ void Callback07(void *argument) { /* USER CODE BEGIN Callback07 */ /* USER CODE END Callback07 */ } /* Callback08 function */ void Callback08(void *argument) { /* USER CODE BEGIN Callback08 */ /* USER CODE END Callback08 */ } /* Callback09 function */ void Callback09(void *argument) { /* USER CODE BEGIN Callback09 */ /* USER CODE END Callback09 */ } /* Callback010 function */ void Callback010(void *argument) { /* USER CODE BEGIN Callback010 */ /* USER CODE END Callback010 */ } /** * @brief Period elapsed callback in non blocking mode * @note This function is called when TIM8 interrupt took place, inside * HAL_TIM_IRQHandler(). It makes a direct call to HAL_IncTick() to increment * a global variable "uwTick" used as application time base. * @param htim : TIM handle * @retval None */ void HAL_TIM_PeriodElapsedCallback(TIM_HandleTypeDef *htim) { /* USER CODE BEGIN Callback 0 */ /* USER CODE END Callback 0 */ if (htim->Instance == TIM8) { HAL_IncTick(); } /* USER CODE BEGIN Callback 1 */ /* USER CODE END Callback 1 */ } /** * @brief This function is executed in case of error occurrence. * @retval None */ void Error_Handler(void) { /* USER CODE BEGIN Error_Handler_Debug */ /* User can add his own implementation to report the HAL error return state */ __disable_irq(); while (1) { } /* USER CODE END Error_Handler_Debug */ } #ifdef USE_FULL_ASSERT /** * @brief Reports the name of the source file and the source line number * where the assert_param error has occurred. * @param file: pointer to the source file name * @param line: assert_param error line source number * @retval None */ void assert_failed(uint8_t *file, uint32_t line) { /* USER CODE BEGIN 6 */ /* User can add his own implementation to report the file name and line number, ex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */ /* USER CODE END 6 */ } #endif /* USE_FULL_ASSERT */ /************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/