| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632 |
- /* ----------------------------------------------------------------------
- * Project: CMSIS DSP Library
- * Title: arm_mat_cmplx_mult_f32.c
- * Description: Floating-point matrix multiplication
- *
- * $Date: 18. March 2019
- * $Revision: V1.6.0
- *
- * Target Processor: Cortex-M cores
- * -------------------------------------------------------------------- */
- /*
- * Copyright (C) 2010-2019 ARM Limited or its affiliates. All rights reserved.
- *
- * SPDX-License-Identifier: Apache-2.0
- *
- * Licensed under the Apache License, Version 2.0 (the License); you may
- * not use this file except in compliance with the License.
- * You may obtain a copy of the License at
- *
- * www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an AS IS BASIS, WITHOUT
- * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
- #include "arm_math.h"
- /**
- @ingroup groupMatrix
- */
- /**
- @defgroup CmplxMatrixMult Complex Matrix Multiplication
- Complex Matrix multiplication is only defined if the number of columns of the
- first matrix equals the number of rows of the second matrix.
- Multiplying an <code>M x N</code> matrix with an <code>N x P</code> matrix results
- in an <code>M x P</code> matrix.
- @par
- When matrix size checking is enabled, the functions check:
- - that the inner dimensions of <code>pSrcA</code> and <code>pSrcB</code> are equal;
- - that the size of the output matrix equals the outer dimensions of <code>pSrcA</code> and <code>pSrcB</code>.
- */
- /**
- @addtogroup CmplxMatrixMult
- @{
- */
- /**
- @brief Floating-point Complex matrix multiplication.
- @param[in] pSrcA points to first input complex matrix structure
- @param[in] pSrcB points to second input complex matrix structure
- @param[out] pDst points to output complex matrix structure
- @return execution status
- - \ref ARM_MATH_SUCCESS : Operation successful
- - \ref ARM_MATH_SIZE_MISMATCH : Matrix size check failed
- */
- #if defined(ARM_MATH_NEON)
- arm_status arm_mat_cmplx_mult_f32(
- const arm_matrix_instance_f32 * pSrcA,
- const arm_matrix_instance_f32 * pSrcB,
- arm_matrix_instance_f32 * pDst)
- {
- float32_t *pIn1 = pSrcA->pData; /* input data matrix pointer A */
- float32_t *pIn2 = pSrcB->pData; /* input data matrix pointer B */
- float32_t *pInA = pSrcA->pData; /* input data matrix pointer A */
- float32_t *pOut = pDst->pData; /* output data matrix pointer */
- float32_t *px; /* Temporary output data matrix pointer */
- uint16_t numRowsA = pSrcA->numRows; /* number of rows of input matrix A */
- uint16_t numColsB = pSrcB->numCols; /* number of columns of input matrix B */
- uint16_t numColsA = pSrcA->numCols; /* number of columns of input matrix A */
- float32_t sumReal1, sumImag1; /* accumulator */
- float32_t a0, b0, c0, d0;
- float32_t a1, a1B,b1, b1B, c1, d1;
- float32_t sumReal2, sumImag2; /* accumulator */
- float32x4x2_t a0V, a1V;
- float32x4_t accR0,accI0, accR1,accI1,tempR, tempI;
- float32x2_t accum = vdup_n_f32(0);
- float32_t *pIn1B = pSrcA->pData;
- uint16_t col, i = 0U, j, rowCnt, row = numRowsA, colCnt; /* loop counters */
- arm_status status; /* status of matrix multiplication */
- float32_t sumReal1B, sumImag1B;
- float32_t sumReal2B, sumImag2B;
- float32_t *pxB;
- #ifdef ARM_MATH_MATRIX_CHECK
- /* Check for matrix mismatch condition */
- if ((pSrcA->numCols != pSrcB->numRows) ||
- (pSrcA->numRows != pDst->numRows) || (pSrcB->numCols != pDst->numCols))
- {
- /* Set status as ARM_MATH_SIZE_MISMATCH */
- status = ARM_MATH_SIZE_MISMATCH;
- }
- else
- #endif /* #ifdef ARM_MATH_MATRIX_CHECK */
- {
- /* The following loop performs the dot-product of each row in pSrcA with each column in pSrcB */
- rowCnt = row >> 1;
- /* Row loop */
- while (rowCnt > 0U)
- {
- /* Output pointer is set to starting address of the row being processed */
- px = pOut + 2 * i;
- pxB = px + 2 * numColsB;
- /* For every row wise process, the column loop counter is to be initiated */
- col = numColsB;
- /* For every row wise process, the pIn2 pointer is set
- ** to the starting address of the pSrcB data */
- pIn2 = pSrcB->pData;
- j = 0U;
- /* Column loop */
- while (col > 0U)
- {
- /* Set the variable sum, that acts as accumulator, to zero */
- sumReal1 = 0.0f;
- sumImag1 = 0.0f;
- sumReal1B = 0.0f;
- sumImag1B = 0.0f;
- sumReal2 = 0.0f;
- sumImag2 = 0.0f;
- sumReal2B = 0.0f;
- sumImag2B = 0.0f;
- /* Initiate the pointer pIn1 to point to the starting address of the column being processed */
- pIn1 = pInA;
- pIn1B = pIn1 + 2*numColsA;
- accR0 = vdupq_n_f32(0.0);
- accI0 = vdupq_n_f32(0.0);
- accR1 = vdupq_n_f32(0.0);
- accI1 = vdupq_n_f32(0.0);
- /* Compute 4 MACs simultaneously. */
- colCnt = numColsA >> 2;
- /* Matrix multiplication */
- while (colCnt > 0U)
- {
- /* Reading real part of complex matrix A */
- a0V = vld2q_f32(pIn1); // load & separate real/imag pSrcA (de-interleave 2)
- a1V = vld2q_f32(pIn1B); // load & separate real/imag pSrcA (de-interleave 2)
- pIn1 += 8;
- pIn1B += 8;
- tempR[0] = *pIn2;
- tempI[0] = *(pIn2 + 1U);
- pIn2 += 2 * numColsB;
- tempR[1] = *pIn2;
- tempI[1] = *(pIn2 + 1U);
- pIn2 += 2 * numColsB;
- tempR[2] = *pIn2;
- tempI[2] = *(pIn2 + 1U);
- pIn2 += 2 * numColsB;
- tempR[3] = *pIn2;
- tempI[3] = *(pIn2 + 1U);
- pIn2 += 2 * numColsB;
- accR0 = vmlaq_f32(accR0,a0V.val[0],tempR);
- accR0 = vmlsq_f32(accR0,a0V.val[1],tempI);
- accI0 = vmlaq_f32(accI0,a0V.val[1],tempR);
- accI0 = vmlaq_f32(accI0,a0V.val[0],tempI);
- accR1 = vmlaq_f32(accR1,a1V.val[0],tempR);
- accR1 = vmlsq_f32(accR1,a1V.val[1],tempI);
- accI1 = vmlaq_f32(accI1,a1V.val[1],tempR);
- accI1 = vmlaq_f32(accI1,a1V.val[0],tempI);
- /* Decrement the loop count */
- colCnt--;
- }
- accum = vpadd_f32(vget_low_f32(accR0), vget_high_f32(accR0));
- sumReal1 += accum[0] + accum[1];
- accum = vpadd_f32(vget_low_f32(accI0), vget_high_f32(accI0));
- sumImag1 += accum[0] + accum[1];
- accum = vpadd_f32(vget_low_f32(accR1), vget_high_f32(accR1));
- sumReal1B += accum[0] + accum[1];
- accum = vpadd_f32(vget_low_f32(accI1), vget_high_f32(accI1));
- sumImag1B += accum[0] + accum[1];
- /* If the columns of pSrcA is not a multiple of 4, compute any remaining MACs here.
- ** No loop unrolling is used. */
- colCnt = numColsA & 3;
- while (colCnt > 0U)
- {
- /* c(m,n) = a(1,1)*b(1,1) + a(1,2)*b(2,1) + ... + a(m,p)*b(p,n) */
- a1 = *pIn1;
- a1B = *pIn1B;
- c1 = *pIn2;
- b1 = *(pIn1 + 1U);
- b1B = *(pIn1B + 1U);
- d1 = *(pIn2 + 1U);
- sumReal1 += a1 * c1;
- sumImag1 += b1 * c1;
- sumReal1B += a1B * c1;
- sumImag1B += b1B * c1;
- pIn1 += 2U;
- pIn1B += 2U;
- pIn2 += 2 * numColsB;
- sumReal2 -= b1 * d1;
- sumImag2 += a1 * d1;
- sumReal2B -= b1B * d1;
- sumImag2B += a1B * d1;
- /* Decrement the loop counter */
- colCnt--;
- }
- sumReal1 += sumReal2;
- sumImag1 += sumImag2;
- sumReal1B += sumReal2B;
- sumImag1B += sumImag2B;
- /* Store the result in the destination buffer */
- *px++ = sumReal1;
- *px++ = sumImag1;
- *pxB++ = sumReal1B;
- *pxB++ = sumImag1B;
- /* Update the pointer pIn2 to point to the starting address of the next column */
- j++;
- pIn2 = pSrcB->pData + 2U * j;
- /* Decrement the column loop counter */
- col--;
- }
- /* Update the pointer pInA to point to the starting address of the next 2 row */
- i = i + 2*numColsB;
- pInA = pInA + 4 * numColsA;
- /* Decrement the row loop counter */
- rowCnt--;
- }
- rowCnt = row & 1;
- while (rowCnt > 0U)
- {
- /* Output pointer is set to starting address of the row being processed */
- px = pOut + 2 * i;
- /* For every row wise process, the column loop counter is to be initiated */
- col = numColsB;
- /* For every row wise process, the pIn2 pointer is set
- ** to the starting address of the pSrcB data */
- pIn2 = pSrcB->pData;
- j = 0U;
- /* Column loop */
- while (col > 0U)
- {
- /* Set the variable sum, that acts as accumulator, to zero */
- sumReal1 = 0.0f;
- sumImag1 = 0.0f;
- sumReal2 = 0.0f;
- sumImag2 = 0.0f;
- /* Initiate the pointer pIn1 to point to the starting address of the column being processed */
- pIn1 = pInA;
- accR0 = vdupq_n_f32(0.0);
- accI0 = vdupq_n_f32(0.0);
- /* Compute 4 MACs simultaneously. */
- colCnt = numColsA >> 2;
- /* Matrix multiplication */
- while (colCnt > 0U)
- {
- /* Reading real part of complex matrix A */
- a0V = vld2q_f32(pIn1); // load & separate real/imag pSrcA (de-interleave 2)
- pIn1 += 8;
- tempR[0] = *pIn2;
- tempI[0] = *(pIn2 + 1U);
- pIn2 += 2 * numColsB;
- tempR[1] = *pIn2;
- tempI[1] = *(pIn2 + 1U);
- pIn2 += 2 * numColsB;
- tempR[2] = *pIn2;
- tempI[2] = *(pIn2 + 1U);
- pIn2 += 2 * numColsB;
- tempR[3] = *pIn2;
- tempI[3] = *(pIn2 + 1U);
- pIn2 += 2 * numColsB;
- accR0 = vmlaq_f32(accR0,a0V.val[0],tempR);
- accR0 = vmlsq_f32(accR0,a0V.val[1],tempI);
- accI0 = vmlaq_f32(accI0,a0V.val[1],tempR);
- accI0 = vmlaq_f32(accI0,a0V.val[0],tempI);
- /* Decrement the loop count */
- colCnt--;
- }
- accum = vpadd_f32(vget_low_f32(accR0), vget_high_f32(accR0));
- sumReal1 += accum[0] + accum[1];
- accum = vpadd_f32(vget_low_f32(accI0), vget_high_f32(accI0));
- sumImag1 += accum[0] + accum[1];
- /* If the columns of pSrcA is not a multiple of 4, compute any remaining MACs here.
- ** No loop unrolling is used. */
- colCnt = numColsA & 3;
- while (colCnt > 0U)
- {
- /* c(m,n) = a(1,1)*b(1,1) + a(1,2)*b(2,1) + ... + a(m,p)*b(p,n) */
- a1 = *pIn1;
- c1 = *pIn2;
- b1 = *(pIn1 + 1U);
- d1 = *(pIn2 + 1U);
- sumReal1 += a1 * c1;
- sumImag1 += b1 * c1;
- pIn1 += 2U;
- pIn2 += 2 * numColsB;
- sumReal2 -= b1 * d1;
- sumImag2 += a1 * d1;
- /* Decrement the loop counter */
- colCnt--;
- }
- sumReal1 += sumReal2;
- sumImag1 += sumImag2;
- /* Store the result in the destination buffer */
- *px++ = sumReal1;
- *px++ = sumImag1;
- /* Update the pointer pIn2 to point to the starting address of the next column */
- j++;
- pIn2 = pSrcB->pData + 2U * j;
- /* Decrement the column loop counter */
- col--;
- }
- /* Update the pointer pInA to point to the starting address of the next row */
- i = i + numColsB;
- pInA = pInA + 2 * numColsA;
- /* Decrement the row loop counter */
- rowCnt--;
- }
- /* Set status as ARM_MATH_SUCCESS */
- status = ARM_MATH_SUCCESS;
- }
- /* Return to application */
- return (status);
- }
- #else
- arm_status arm_mat_cmplx_mult_f32(
- const arm_matrix_instance_f32 * pSrcA,
- const arm_matrix_instance_f32 * pSrcB,
- arm_matrix_instance_f32 * pDst)
- {
- float32_t *pIn1 = pSrcA->pData; /* Input data matrix pointer A */
- float32_t *pIn2 = pSrcB->pData; /* Input data matrix pointer B */
- float32_t *pInA = pSrcA->pData; /* Input data matrix pointer A */
- float32_t *pOut = pDst->pData; /* Output data matrix pointer */
- float32_t *px; /* Temporary output data matrix pointer */
- uint16_t numRowsA = pSrcA->numRows; /* Number of rows of input matrix A */
- uint16_t numColsB = pSrcB->numCols; /* Number of columns of input matrix B */
- uint16_t numColsA = pSrcA->numCols; /* Number of columns of input matrix A */
- float32_t sumReal, sumImag; /* Accumulator */
- float32_t a1, b1, c1, d1;
- uint32_t col, i = 0U, j, row = numRowsA, colCnt; /* loop counters */
- arm_status status; /* status of matrix multiplication */
- #if defined (ARM_MATH_LOOPUNROLL)
- float32_t a0, b0, c0, d0;
- #endif
- #ifdef ARM_MATH_MATRIX_CHECK
- /* Check for matrix mismatch condition */
- if ((pSrcA->numCols != pSrcB->numRows) ||
- (pSrcA->numRows != pDst->numRows) ||
- (pSrcB->numCols != pDst->numCols) )
- {
- /* Set status as ARM_MATH_SIZE_MISMATCH */
- status = ARM_MATH_SIZE_MISMATCH;
- }
- else
- #endif /* #ifdef ARM_MATH_MATRIX_CHECK */
- {
- /* The following loop performs the dot-product of each row in pSrcA with each column in pSrcB */
- /* row loop */
- do
- {
- /* Output pointer is set to starting address of the row being processed */
- px = pOut + 2 * i;
- /* For every row wise process, the column loop counter is to be initiated */
- col = numColsB;
- /* For every row wise process, the pIn2 pointer is set
- ** to the starting address of the pSrcB data */
- pIn2 = pSrcB->pData;
- j = 0U;
- /* column loop */
- do
- {
- /* Set the variable sum, that acts as accumulator, to zero */
- sumReal = 0.0f;
- sumImag = 0.0f;
- /* Initiate pointer pIn1 to point to starting address of column being processed */
- pIn1 = pInA;
- #if defined (ARM_MATH_LOOPUNROLL)
- /* Apply loop unrolling and compute 4 MACs simultaneously. */
- colCnt = numColsA >> 2U;
- /* matrix multiplication */
- while (colCnt > 0U)
- {
- /* Reading real part of complex matrix A */
- a0 = *pIn1;
- /* Reading real part of complex matrix B */
- c0 = *pIn2;
- /* Reading imaginary part of complex matrix A */
- b0 = *(pIn1 + 1U);
- /* Reading imaginary part of complex matrix B */
- d0 = *(pIn2 + 1U);
- /* Multiply and Accumlates */
- sumReal += a0 * c0;
- sumImag += b0 * c0;
- /* update pointers */
- pIn1 += 2U;
- pIn2 += 2 * numColsB;
- /* Multiply and Accumlates */
- sumReal -= b0 * d0;
- sumImag += a0 * d0;
- /* c(m,n) = a(1,1) * b(1,1) + a(1,2) * b(2,1) + .... + a(m,p) * b(p,n) */
- /* read real and imag values from pSrcA and pSrcB buffer */
- a1 = *(pIn1 );
- c1 = *(pIn2 );
- b1 = *(pIn1 + 1U);
- d1 = *(pIn2 + 1U);
- /* Multiply and Accumlates */
- sumReal += a1 * c1;
- sumImag += b1 * c1;
- /* update pointers */
- pIn1 += 2U;
- pIn2 += 2 * numColsB;
- /* Multiply and Accumlates */
- sumReal -= b1 * d1;
- sumImag += a1 * d1;
- a0 = *(pIn1 );
- c0 = *(pIn2 );
- b0 = *(pIn1 + 1U);
- d0 = *(pIn2 + 1U);
- /* Multiply and Accumlates */
- sumReal += a0 * c0;
- sumImag += b0 * c0;
- /* update pointers */
- pIn1 += 2U;
- pIn2 += 2 * numColsB;
- /* Multiply and Accumlates */
- sumReal -= b0 * d0;
- sumImag += a0 * d0;
- /* c(m,n) = a(1,1) * b(1,1) + a(1,2) * b(2,1) + .... + a(m,p) * b(p,n) */
- a1 = *(pIn1 );
- c1 = *(pIn2 );
- b1 = *(pIn1 + 1U);
- d1 = *(pIn2 + 1U);
- /* Multiply and Accumlates */
- sumReal += a1 * c1;
- sumImag += b1 * c1;
- /* update pointers */
- pIn1 += 2U;
- pIn2 += 2 * numColsB;
- /* Multiply and Accumlates */
- sumReal -= b1 * d1;
- sumImag += a1 * d1;
- /* Decrement loop count */
- colCnt--;
- }
- /* If the columns of pSrcA is not a multiple of 4, compute any remaining MACs here.
- ** No loop unrolling is used. */
- colCnt = numColsA % 0x4U;
- #else
- /* Initialize blkCnt with number of samples */
- colCnt = numColsA;
- #endif /* #if defined (ARM_MATH_LOOPUNROLL) */
- while (colCnt > 0U)
- {
- /* c(m,n) = a(1,1) * b(1,1) + a(1,2) * b(2,1) + .... + a(m,p) * b(p,n) */
- a1 = *(pIn1 );
- c1 = *(pIn2 );
- b1 = *(pIn1 + 1U);
- d1 = *(pIn2 + 1U);
- /* Multiply and Accumlates */
- sumReal += a1 * c1;
- sumImag += b1 * c1;
- /* update pointers */
- pIn1 += 2U;
- pIn2 += 2 * numColsB;
- /* Multiply and Accumlates */
- sumReal -= b1 * d1;
- sumImag += a1 * d1;
- /* Decrement loop counter */
- colCnt--;
- }
- /* Store result in destination buffer */
- *px++ = sumReal;
- *px++ = sumImag;
- /* Update pointer pIn2 to point to starting address of next column */
- j++;
- pIn2 = pSrcB->pData + 2U * j;
- /* Decrement column loop counter */
- col--;
- } while (col > 0U);
- /* Update pointer pInA to point to starting address of next row */
- i = i + numColsB;
- pInA = pInA + 2 * numColsA;
- /* Decrement row loop counter */
- row--;
- } while (row > 0U);
- /* Set status as ARM_MATH_SUCCESS */
- status = ARM_MATH_SUCCESS;
- }
- /* Return to application */
- return (status);
- }
- #endif /* #if defined(ARM_MATH_NEON) */
- /**
- @} end of MatrixMult group
- */
|