123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535 |
- /* ----------------------------------------------------------------------
- * Project: CMSIS DSP Library
- * Title: arm_mat_mult_f32.c
- * Description: Floating-point matrix multiplication
- *
- * $Date: 18. March 2019
- * $Revision: V1.6.0
- *
- * Target Processor: Cortex-M cores
- * -------------------------------------------------------------------- */
- /*
- * Copyright (C) 2010-2019 ARM Limited or its affiliates. All rights reserved.
- *
- * SPDX-License-Identifier: Apache-2.0
- *
- * Licensed under the Apache License, Version 2.0 (the License); you may
- * not use this file except in compliance with the License.
- * You may obtain a copy of the License at
- *
- * www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an AS IS BASIS, WITHOUT
- * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
- #include "arm_math.h"
- /**
- * @ingroup groupMatrix
- */
- /**
- * @defgroup MatrixMult Matrix Multiplication
- *
- * Multiplies two matrices.
- *
- * \image html MatrixMultiplication.gif "Multiplication of two 3 x 3 matrices"
- * Matrix multiplication is only defined if the number of columns of the
- * first matrix equals the number of rows of the second matrix.
- * Multiplying an <code>M x N</code> matrix with an <code>N x P</code> matrix results
- * in an <code>M x P</code> matrix.
- * When matrix size checking is enabled, the functions check: (1) that the inner dimensions of
- * <code>pSrcA</code> and <code>pSrcB</code> are equal; and (2) that the size of the output
- * matrix equals the outer dimensions of <code>pSrcA</code> and <code>pSrcB</code>.
- */
- /**
- * @addtogroup MatrixMult
- * @{
- */
- /**
- * @brief Floating-point matrix multiplication.
- * @param[in] *pSrcA points to the first input matrix structure
- * @param[in] *pSrcB points to the second input matrix structure
- * @param[out] *pDst points to output matrix structure
- * @return The function returns either
- * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
- */
- #if defined(ARM_MATH_NEON)
- #define GROUPOFROWS 8
- arm_status arm_mat_mult_f32(
- const arm_matrix_instance_f32 * pSrcA,
- const arm_matrix_instance_f32 * pSrcB,
- arm_matrix_instance_f32 * pDst)
- {
- float32_t *pIn1 = pSrcA->pData; /* input data matrix pointer A */
- float32_t *pIn2 = pSrcB->pData; /* input data matrix pointer B */
- float32_t *pInA = pSrcA->pData; /* input data matrix pointer A */
- float32_t *pOut = pDst->pData; /* output data matrix pointer */
- float32_t *px; /* Temporary output data matrix pointer */
- float32_t sum; /* Accumulator */
- uint16_t numRowsA = pSrcA->numRows; /* number of rows of input matrix A */
- uint16_t numColsB = pSrcB->numCols; /* number of columns of input matrix B */
- uint16_t numColsA = pSrcA->numCols; /* number of columns of input matrix A */
- float32_t in1, in2, in3, in4;
- uint16_t col, i = 0U, j, row = numRowsA, rowCnt, colCnt; /* loop counters */
- arm_status status; /* status of matrix multiplication */
- float32x4_t a0V, a1V, a2V, a3V, a4V, a5V, a6V, a7V;
- float32x4_t acc0,acc1,acc2,acc3,acc4,acc5,acc6,acc7,temp;
- float32x2_t accum = vdup_n_f32(0);
- float32_t *pIn1B = pSrcA->pData;
- float32_t *pIn1C = pSrcA->pData;
- float32_t *pIn1D = pSrcA->pData;
- float32_t *pIn1E = pSrcA->pData;
- float32_t *pIn1F = pSrcA->pData;
- float32_t *pIn1G = pSrcA->pData;
- float32_t *pIn1H = pSrcA->pData;
- float32_t *pxB,*pxC, *pxD, *pxE, *pxF, *pxG, *pxH; /* Temporary output data matrix pointer */
- float32_t sum0,sum1, sum2,sum3, sum4, sum5 , sum6, sum7;
- #ifdef ARM_MATH_MATRIX_CHECK
- /* Check for matrix mismatch condition */
- if ((pSrcA->numCols != pSrcB->numRows) ||
- (pSrcA->numRows != pDst->numRows) || (pSrcB->numCols != pDst->numCols))
- {
- /* Set status as ARM_MATH_SIZE_MISMATCH */
- status = ARM_MATH_SIZE_MISMATCH;
- }
- else
- #endif /* #ifdef ARM_MATH_MATRIX_CHECK */
- {
- /* The following loop performs the dot-product of each row in pSrcA with each column in pSrcB */
- /* Row loop */
- rowCnt = row >> 3;
- while(rowCnt > 0)
- {
- /* Output pointer is set to starting address of the row being processed */
- px = pOut + GROUPOFROWS*i;
- pxB = px + numColsB;
- pxC = px + 2*numColsB;
- pxD = px + 3*numColsB;
- pxE = px + 4*numColsB;
- pxF = px + 5*numColsB;
- pxG = px + 6*numColsB;
- pxH = px + 7*numColsB;
- /* For every row wise process, the column loop counter is to be initiated */
- col = numColsB;
- /* For every row wise process, the pIn2 pointer is set
- ** to the starting address of the pSrcB data */
- pIn2 = pSrcB->pData;
- j = 0U;
- /* Column loop */
- do
- {
- /* Set the variable sum, that acts as accumulator, to zero */
- sum0 = 0.0f;
- sum1 = 0.0f;
- sum2 = 0.0f;
- sum3 = 0.0f;
- sum4 = 0.0f;
- sum5 = 0.0f;
- sum6 = 0.0f;
- sum7 = 0.0f;
- /* Initiate the pointer pIn1 to point to the starting address of the column being processed */
- pIn1 = pInA;
- pIn1B = pIn1 + numColsA;
- pIn1C = pIn1 + 2*numColsA;
- pIn1D = pIn1 + 3*numColsA;
- pIn1E = pIn1 + 4*numColsA;
- pIn1F = pIn1 + 5*numColsA;
- pIn1G = pIn1 + 6*numColsA;
- pIn1H = pIn1 + 7*numColsA;
- acc0 = vdupq_n_f32(0.0);
- acc1 = vdupq_n_f32(0.0);
- acc2 = vdupq_n_f32(0.0);
- acc3 = vdupq_n_f32(0.0);
- acc4 = vdupq_n_f32(0.0);
- acc5 = vdupq_n_f32(0.0);
- acc6 = vdupq_n_f32(0.0);
- acc7 = vdupq_n_f32(0.0);
- /* Compute 4 MACs simultaneously. */
- colCnt = numColsA >> 2U;
- /* Matrix multiplication */
- while (colCnt > 0U)
- {
- /* c(m,n) = a(1,1)*b(1,1) + a(1,2)*b(2,1) + ... + a(m,p)*b(p,n) */
- a0V = vld1q_f32(pIn1);
- a1V = vld1q_f32(pIn1B);
- a2V = vld1q_f32(pIn1C);
- a3V = vld1q_f32(pIn1D);
- a4V = vld1q_f32(pIn1E);
- a5V = vld1q_f32(pIn1F);
- a6V = vld1q_f32(pIn1G);
- a7V = vld1q_f32(pIn1H);
- pIn1 += 4;
- pIn1B += 4;
- pIn1C += 4;
- pIn1D += 4;
- pIn1E += 4;
- pIn1F += 4;
- pIn1G += 4;
- pIn1H += 4;
-
- temp[0] = *pIn2;
- pIn2 += numColsB;
- temp[1] = *pIn2;
- pIn2 += numColsB;
- temp[2] = *pIn2;
- pIn2 += numColsB;
- temp[3] = *pIn2;
- pIn2 += numColsB;
- acc0 = vmlaq_f32(acc0,a0V,temp);
- acc1 = vmlaq_f32(acc1,a1V,temp);
- acc2 = vmlaq_f32(acc2,a2V,temp);
- acc3 = vmlaq_f32(acc3,a3V,temp);
- acc4 = vmlaq_f32(acc4,a4V,temp);
- acc5 = vmlaq_f32(acc5,a5V,temp);
- acc6 = vmlaq_f32(acc6,a6V,temp);
- acc7 = vmlaq_f32(acc7,a7V,temp);
- /* Decrement the loop count */
- colCnt--;
- }
- accum = vpadd_f32(vget_low_f32(acc0), vget_high_f32(acc0));
- sum0 += accum[0] + accum[1];
- accum = vpadd_f32(vget_low_f32(acc1), vget_high_f32(acc1));
- sum1 += accum[0] + accum[1];
- accum = vpadd_f32(vget_low_f32(acc2), vget_high_f32(acc2));
- sum2 += accum[0] + accum[1];
- accum = vpadd_f32(vget_low_f32(acc3), vget_high_f32(acc3));
- sum3 += accum[0] + accum[1];
- accum = vpadd_f32(vget_low_f32(acc4), vget_high_f32(acc4));
- sum4 += accum[0] + accum[1];
- accum = vpadd_f32(vget_low_f32(acc5), vget_high_f32(acc5));
- sum5 += accum[0] + accum[1];
- accum = vpadd_f32(vget_low_f32(acc6), vget_high_f32(acc6));
- sum6 += accum[0] + accum[1];
- accum = vpadd_f32(vget_low_f32(acc7), vget_high_f32(acc7));
- sum7 += accum[0] + accum[1];
- /* If the columns of pSrcA is not a multiple of 4, compute any remaining MACs here.
- ** No loop unrolling is used. */
- colCnt = numColsA & 3;
- while (colCnt > 0U)
- {
- /* c(m,n) = a(1,1)*b(1,1) + a(1,2)*b(2,1) + ... + a(m,p)*b(p,n) */
- sum0 += *pIn1++ * (*pIn2);
- sum1 += *pIn1B++ * (*pIn2);
- sum2 += *pIn1C++ * (*pIn2);
- sum3 += *pIn1D++ * (*pIn2);
- sum4 += *pIn1E++ * (*pIn2);
- sum5 += *pIn1F++ * (*pIn2);
- sum6 += *pIn1G++ * (*pIn2);
- sum7 += *pIn1H++ * (*pIn2);
- pIn2 += numColsB;
- /* Decrement the loop counter */
- colCnt--;
- }
- /* Store the result in the destination buffer */
- *px++ = sum0;
- *pxB++ = sum1;
- *pxC++ = sum2;
- *pxD++ = sum3;
- *pxE++ = sum4;
- *pxF++ = sum5;
- *pxG++ = sum6;
- *pxH++ = sum7;
- /* Update the pointer pIn2 to point to the starting address of the next column */
- j++;
- pIn2 = pSrcB->pData + j;
- /* Decrement the column loop counter */
- col--;
- } while (col > 0U);
- /* Update the pointer pInA to point to the starting address of the next row */
- i = i + numColsB;
- pInA = pInA + GROUPOFROWS*numColsA;
- /* Decrement the row loop counter */
- rowCnt--;
- }
- /*
- i was the index of a group of rows computed by previous loop.
- Now i is the index of a row since below code is computing row per row
- and no more group of row per group of rows.
- */
- i = GROUPOFROWS*i;
- rowCnt = row & 7;
- while(rowCnt > 0)
- {
- /* Output pointer is set to starting address of the row being processed */
- px = pOut + i;
- /* For every row wise process, the column loop counter is to be initiated */
- col = numColsB;
- /* For every row wise process, the pIn2 pointer is set
- ** to the starting address of the pSrcB data */
- pIn2 = pSrcB->pData;
- j = 0U;
- /* Column loop */
- do
- {
- /* Set the variable sum, that acts as accumulator, to zero */
- sum = 0.0f;
- /* Initiate the pointer pIn1 to point to the starting address of the column being processed */
- pIn1 = pInA;
- acc0 = vdupq_n_f32(0.0);
- /* Compute 4 MACs simultaneously. */
- colCnt = numColsA >> 2U;
- /* Matrix multiplication */
- while (colCnt > 0U)
- {
- /* c(m,n) = a(1,1)*b(1,1) + a(1,2)*b(2,1) + ... + a(m,p)*b(p,n) */
- a0V = vld1q_f32(pIn1); // load & separate real/imag pSrcA (de-interleave 2)
- pIn1 += 4;
-
- temp[0] = *pIn2;
- pIn2 += numColsB;
- temp[1] = *pIn2;
- pIn2 += numColsB;
- temp[2] = *pIn2;
- pIn2 += numColsB;
- temp[3] = *pIn2;
- pIn2 += numColsB;
- acc0 = vmlaq_f32(acc0,a0V,temp);
- /* Decrement the loop count */
- colCnt--;
- }
- accum = vpadd_f32(vget_low_f32(acc0), vget_high_f32(acc0));
- sum += accum[0] + accum[1];
- /* If the columns of pSrcA is not a multiple of 4, compute any remaining MACs here.
- ** No loop unrolling is used. */
- colCnt = numColsA % 0x4U;
- while (colCnt > 0U)
- {
- /* c(m,n) = a(1,1)*b(1,1) + a(1,2)*b(2,1) + ... + a(m,p)*b(p,n) */
- sum += *pIn1++ * (*pIn2);
- pIn2 += numColsB;
- /* Decrement the loop counter */
- colCnt--;
- }
- /* Store the result in the destination buffer */
- *px++ = sum;
- /* Update the pointer pIn2 to point to the starting address of the next column */
- j++;
- pIn2 = pSrcB->pData + j;
- /* Decrement the column loop counter */
- col--;
- } while (col > 0U);
- /* Update the pointer pInA to point to the starting address of the next row */
- i = i + numColsB;
- pInA = pInA + numColsA;
- /* Decrement the row loop counter */
- rowCnt--;
- }
- /* Set status as ARM_MATH_SUCCESS */
- status = ARM_MATH_SUCCESS;
- }
- /* Return to application */
- return (status);
- }
- #else
- arm_status arm_mat_mult_f32(
- const arm_matrix_instance_f32 * pSrcA,
- const arm_matrix_instance_f32 * pSrcB,
- arm_matrix_instance_f32 * pDst)
- {
- float32_t *pIn1 = pSrcA->pData; /* Input data matrix pointer A */
- float32_t *pIn2 = pSrcB->pData; /* Input data matrix pointer B */
- float32_t *pInA = pSrcA->pData; /* Input data matrix pointer A */
- float32_t *pInB = pSrcB->pData; /* Input data matrix pointer B */
- float32_t *pOut = pDst->pData; /* Output data matrix pointer */
- float32_t *px; /* Temporary output data matrix pointer */
- float32_t sum; /* Accumulator */
- uint16_t numRowsA = pSrcA->numRows; /* Number of rows of input matrix A */
- uint16_t numColsB = pSrcB->numCols; /* Number of columns of input matrix B */
- uint16_t numColsA = pSrcA->numCols; /* Number of columns of input matrix A */
- uint32_t col, i = 0U, row = numRowsA, colCnt; /* Loop counters */
- arm_status status; /* Status of matrix multiplication */
- #ifdef ARM_MATH_MATRIX_CHECK
- /* Check for matrix mismatch condition */
- if ((pSrcA->numCols != pSrcB->numRows) ||
- (pSrcA->numRows != pDst->numRows) ||
- (pSrcB->numCols != pDst->numCols) )
- {
- /* Set status as ARM_MATH_SIZE_MISMATCH */
- status = ARM_MATH_SIZE_MISMATCH;
- }
- else
- #endif /* #ifdef ARM_MATH_MATRIX_CHECK */
- {
- /* The following loop performs the dot-product of each row in pSrcA with each column in pSrcB */
- /* row loop */
- do
- {
- /* Output pointer is set to starting address of row being processed */
- px = pOut + i;
- /* For every row wise process, column loop counter is to be initiated */
- col = numColsB;
- /* For every row wise process, pIn2 pointer is set to starting address of pSrcB data */
- pIn2 = pSrcB->pData;
- /* column loop */
- do
- {
- /* Set the variable sum, that acts as accumulator, to zero */
- sum = 0.0f;
- /* Initialize pointer pIn1 to point to starting address of column being processed */
- pIn1 = pInA;
- #if defined (ARM_MATH_LOOPUNROLL)
- /* Loop unrolling: Compute 4 MACs at a time. */
- colCnt = numColsA >> 2U;
- /* matrix multiplication */
- while (colCnt > 0U)
- {
- /* c(m,n) = a(1,1) * b(1,1) + a(1,2) * b(2,1) + .... + a(m,p) * b(p,n) */
- /* Perform the multiply-accumulates */
- sum += *pIn1++ * *pIn2;
- pIn2 += numColsB;
- sum += *pIn1++ * *pIn2;
- pIn2 += numColsB;
- sum += *pIn1++ * *pIn2;
- pIn2 += numColsB;
- sum += *pIn1++ * *pIn2;
- pIn2 += numColsB;
- /* Decrement loop counter */
- colCnt--;
- }
- /* Loop unrolling: Compute remaining MACs */
- colCnt = numColsA % 0x4U;
- #else
- /* Initialize cntCnt with number of columns */
- colCnt = numColsA;
- #endif /* #if defined (ARM_MATH_LOOPUNROLL) */
- while (colCnt > 0U)
- {
- /* c(m,n) = a(1,1) * b(1,1) + a(1,2) * b(2,1) + .... + a(m,p) * b(p,n) */
- /* Perform the multiply-accumulates */
- sum += *pIn1++ * *pIn2;
- pIn2 += numColsB;
- /* Decrement loop counter */
- colCnt--;
- }
- /* Store result in destination buffer */
- *px++ = sum;
- /* Decrement column loop counter */
- col--;
- /* Update pointer pIn2 to point to starting address of next column */
- pIn2 = pInB + (numColsB - col);
- } while (col > 0U);
- /* Update pointer pInA to point to starting address of next row */
- i = i + numColsB;
- pInA = pInA + numColsA;
- /* Decrement row loop counter */
- row--;
- } while (row > 0U);
- /* Set status as ARM_MATH_SUCCESS */
- status = ARM_MATH_SUCCESS;
- }
- /* Return to application */
- return (status);
- }
- #endif /* #if defined(ARM_MATH_NEON) */
- /**
- * @} end of MatrixMult group
- */
|