123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189 |
- /* ----------------------------------------------------------------------
- * Project: CMSIS DSP Library
- * Title: arm_cmplx_mag_f32.c
- * Description: Floating-point complex magnitude
- *
- * $Date: 18. March 2019
- * $Revision: V1.6.0
- *
- * Target Processor: Cortex-M cores
- * -------------------------------------------------------------------- */
- /*
- * Copyright (C) 2010-2019 ARM Limited or its affiliates. All rights reserved.
- *
- * SPDX-License-Identifier: Apache-2.0
- *
- * Licensed under the Apache License, Version 2.0 (the License); you may
- * not use this file except in compliance with the License.
- * You may obtain a copy of the License at
- *
- * www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an AS IS BASIS, WITHOUT
- * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
- #include "arm_math.h"
- /**
- @ingroup groupCmplxMath
- */
- /**
- @defgroup cmplx_mag Complex Magnitude
- Computes the magnitude of the elements of a complex data vector.
- The <code>pSrc</code> points to the source data and
- <code>pDst</code> points to the where the result should be written.
- <code>numSamples</code> specifies the number of complex samples
- in the input array and the data is stored in an interleaved fashion
- (real, imag, real, imag, ...).
- The input array has a total of <code>2*numSamples</code> values;
- the output array has a total of <code>numSamples</code> values.
- The underlying algorithm is used:
- <pre>
- for (n = 0; n < numSamples; n++) {
- pDst[n] = sqrt(pSrc[(2*n)+0]^2 + pSrc[(2*n)+1]^2);
- }
- </pre>
- There are separate functions for floating-point, Q15, and Q31 data types.
- */
- /**
- @addtogroup cmplx_mag
- @{
- */
- /**
- @brief Floating-point complex magnitude.
- @param[in] pSrc points to input vector
- @param[out] pDst points to output vector
- @param[in] numSamples number of samples in each vector
- @return none
- */
- void arm_cmplx_mag_f32(
- const float32_t * pSrc,
- float32_t * pDst,
- uint32_t numSamples)
- {
- uint32_t blkCnt; /* loop counter */
- float32_t real, imag; /* Temporary variables to hold input values */
- #if defined(ARM_MATH_NEON)
- float32x4x2_t vecA;
- float32x4_t vRealA;
- float32x4_t vImagA;
- float32x4_t vMagSqA;
- float32x4x2_t vecB;
- float32x4_t vRealB;
- float32x4_t vImagB;
- float32x4_t vMagSqB;
- /* Loop unrolling: Compute 8 outputs at a time */
- blkCnt = numSamples >> 3;
- while (blkCnt > 0U)
- {
- /* out = sqrt((real * real) + (imag * imag)) */
- vecA = vld2q_f32(pSrc);
- pSrc += 8;
- vecB = vld2q_f32(pSrc);
- pSrc += 8;
- vRealA = vmulq_f32(vecA.val[0], vecA.val[0]);
- vImagA = vmulq_f32(vecA.val[1], vecA.val[1]);
- vMagSqA = vaddq_f32(vRealA, vImagA);
- vRealB = vmulq_f32(vecB.val[0], vecB.val[0]);
- vImagB = vmulq_f32(vecB.val[1], vecB.val[1]);
- vMagSqB = vaddq_f32(vRealB, vImagB);
- /* Store the result in the destination buffer. */
- vst1q_f32(pDst, __arm_vec_sqrt_f32_neon(vMagSqA));
- pDst += 4;
- vst1q_f32(pDst, __arm_vec_sqrt_f32_neon(vMagSqB));
- pDst += 4;
- /* Decrement the loop counter */
- blkCnt--;
- }
- blkCnt = numSamples & 7;
- #else
- #if defined (ARM_MATH_LOOPUNROLL)
- /* Loop unrolling: Compute 4 outputs at a time */
- blkCnt = numSamples >> 2U;
- while (blkCnt > 0U)
- {
- /* C[0] = sqrt(A[0] * A[0] + A[1] * A[1]) */
- real = *pSrc++;
- imag = *pSrc++;
- /* store result in destination buffer. */
- arm_sqrt_f32((real * real) + (imag * imag), pDst++);
- real = *pSrc++;
- imag = *pSrc++;
- arm_sqrt_f32((real * real) + (imag * imag), pDst++);
- real = *pSrc++;
- imag = *pSrc++;
- arm_sqrt_f32((real * real) + (imag * imag), pDst++);
- real = *pSrc++;
- imag = *pSrc++;
- arm_sqrt_f32((real * real) + (imag * imag), pDst++);
- /* Decrement loop counter */
- blkCnt--;
- }
- /* Loop unrolling: Compute remaining outputs */
- blkCnt = numSamples % 0x4U;
- #else
- /* Initialize blkCnt with number of samples */
- blkCnt = numSamples;
- #endif /* #if defined (ARM_MATH_LOOPUNROLL) */
- #endif /* #if defined(ARM_MATH_NEON) */
- while (blkCnt > 0U)
- {
- /* C[0] = sqrt(A[0] * A[0] + A[1] * A[1]) */
- real = *pSrc++;
- imag = *pSrc++;
- /* store result in destination buffer. */
- arm_sqrt_f32((real * real) + (imag * imag), pDst++);
- /* Decrement loop counter */
- blkCnt--;
- }
- }
- /**
- @} end of cmplx_mag group
- */
|