123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234 |
- /* ----------------------------------------------------------------------
- * Project: CMSIS DSP Library
- * Title: arm_cmplx_dot_prod_f32.c
- * Description: Floating-point complex dot product
- *
- * $Date: 18. March 2019
- * $Revision: V1.6.0
- *
- * Target Processor: Cortex-M cores
- * -------------------------------------------------------------------- */
- /*
- * Copyright (C) 2010-2019 ARM Limited or its affiliates. All rights reserved.
- *
- * SPDX-License-Identifier: Apache-2.0
- *
- * Licensed under the Apache License, Version 2.0 (the License); you may
- * not use this file except in compliance with the License.
- * You may obtain a copy of the License at
- *
- * www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an AS IS BASIS, WITHOUT
- * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
- #include "arm_math.h"
- /**
- @ingroup groupCmplxMath
- */
- /**
- @defgroup cmplx_dot_prod Complex Dot Product
- Computes the dot product of two complex vectors.
- The vectors are multiplied element-by-element and then summed.
- The <code>pSrcA</code> points to the first complex input vector and
- <code>pSrcB</code> points to the second complex input vector.
- <code>numSamples</code> specifies the number of complex samples
- and the data in each array is stored in an interleaved fashion
- (real, imag, real, imag, ...).
- Each array has a total of <code>2*numSamples</code> values.
- The underlying algorithm is used:
- <pre>
- realResult = 0;
- imagResult = 0;
- for (n = 0; n < numSamples; n++) {
- realResult += pSrcA[(2*n)+0] * pSrcB[(2*n)+0] - pSrcA[(2*n)+1] * pSrcB[(2*n)+1];
- imagResult += pSrcA[(2*n)+0] * pSrcB[(2*n)+1] + pSrcA[(2*n)+1] * pSrcB[(2*n)+0];
- }
- </pre>
- There are separate functions for floating-point, Q15, and Q31 data types.
- */
- /**
- @addtogroup cmplx_dot_prod
- @{
- */
- /**
- @brief Floating-point complex dot product.
- @param[in] pSrcA points to the first input vector
- @param[in] pSrcB points to the second input vector
- @param[in] numSamples number of samples in each vector
- @param[out] realResult real part of the result returned here
- @param[out] imagResult imaginary part of the result returned here
- @return none
- */
- void arm_cmplx_dot_prod_f32(
- const float32_t * pSrcA,
- const float32_t * pSrcB,
- uint32_t numSamples,
- float32_t * realResult,
- float32_t * imagResult)
- {
- uint32_t blkCnt; /* Loop counter */
- float32_t real_sum = 0.0f, imag_sum = 0.0f; /* Temporary result variables */
- float32_t a0,b0,c0,d0;
- #if defined(ARM_MATH_NEON)
- float32x4x2_t vec1,vec2,vec3,vec4;
- float32x4_t accR,accI;
- float32x2_t accum = vdup_n_f32(0);
- accR = vdupq_n_f32(0.0);
- accI = vdupq_n_f32(0.0);
- /* Loop unrolling: Compute 8 outputs at a time */
- blkCnt = numSamples >> 3U;
- while (blkCnt > 0U)
- {
- /* C = (A[0]+jA[1])*(B[0]+jB[1]) + ... */
- /* Calculate dot product and then store the result in a temporary buffer. */
- vec1 = vld2q_f32(pSrcA);
- vec2 = vld2q_f32(pSrcB);
- /* Increment pointers */
- pSrcA += 8;
- pSrcB += 8;
- /* Re{C} = Re{A}*Re{B} - Im{A}*Im{B} */
- accR = vmlaq_f32(accR,vec1.val[0],vec2.val[0]);
- accR = vmlsq_f32(accR,vec1.val[1],vec2.val[1]);
- /* Im{C} = Re{A}*Im{B} + Im{A}*Re{B} */
- accI = vmlaq_f32(accI,vec1.val[1],vec2.val[0]);
- accI = vmlaq_f32(accI,vec1.val[0],vec2.val[1]);
- vec3 = vld2q_f32(pSrcA);
- vec4 = vld2q_f32(pSrcB);
-
- /* Increment pointers */
- pSrcA += 8;
- pSrcB += 8;
- /* Re{C} = Re{A}*Re{B} - Im{A}*Im{B} */
- accR = vmlaq_f32(accR,vec3.val[0],vec4.val[0]);
- accR = vmlsq_f32(accR,vec3.val[1],vec4.val[1]);
- /* Im{C} = Re{A}*Im{B} + Im{A}*Re{B} */
- accI = vmlaq_f32(accI,vec3.val[1],vec4.val[0]);
- accI = vmlaq_f32(accI,vec3.val[0],vec4.val[1]);
- /* Decrement the loop counter */
- blkCnt--;
- }
- accum = vpadd_f32(vget_low_f32(accR), vget_high_f32(accR));
- real_sum += accum[0] + accum[1];
- accum = vpadd_f32(vget_low_f32(accI), vget_high_f32(accI));
- imag_sum += accum[0] + accum[1];
- /* Tail */
- blkCnt = numSamples & 0x7;
- #else
- #if defined (ARM_MATH_LOOPUNROLL)
- /* Loop unrolling: Compute 4 outputs at a time */
- blkCnt = numSamples >> 2U;
- while (blkCnt > 0U)
- {
- a0 = *pSrcA++;
- b0 = *pSrcA++;
- c0 = *pSrcB++;
- d0 = *pSrcB++;
- real_sum += a0 * c0;
- imag_sum += a0 * d0;
- real_sum -= b0 * d0;
- imag_sum += b0 * c0;
- a0 = *pSrcA++;
- b0 = *pSrcA++;
- c0 = *pSrcB++;
- d0 = *pSrcB++;
- real_sum += a0 * c0;
- imag_sum += a0 * d0;
- real_sum -= b0 * d0;
- imag_sum += b0 * c0;
- a0 = *pSrcA++;
- b0 = *pSrcA++;
- c0 = *pSrcB++;
- d0 = *pSrcB++;
- real_sum += a0 * c0;
- imag_sum += a0 * d0;
- real_sum -= b0 * d0;
- imag_sum += b0 * c0;
- a0 = *pSrcA++;
- b0 = *pSrcA++;
- c0 = *pSrcB++;
- d0 = *pSrcB++;
- real_sum += a0 * c0;
- imag_sum += a0 * d0;
- real_sum -= b0 * d0;
- imag_sum += b0 * c0;
- /* Decrement loop counter */
- blkCnt--;
- }
- /* Loop unrolling: Compute remaining outputs */
- blkCnt = numSamples % 0x4U;
- #else
- /* Initialize blkCnt with number of samples */
- blkCnt = numSamples;
- #endif /* #if defined (ARM_MATH_LOOPUNROLL) */
- #endif /* #if defined(ARM_MATH_NEON) */
- while (blkCnt > 0U)
- {
- a0 = *pSrcA++;
- b0 = *pSrcA++;
- c0 = *pSrcB++;
- d0 = *pSrcB++;
- real_sum += a0 * c0;
- imag_sum += a0 * d0;
- real_sum -= b0 * d0;
- imag_sum += b0 * c0;
- /* Decrement loop counter */
- blkCnt--;
- }
- /* Store real and imaginary result in destination buffer. */
- *realResult = real_sum;
- *imagResult = imag_sum;
- }
- /**
- @} end of cmplx_dot_prod group
- */
|